
Matched Asymptotic Analysis
of the Luria–Delbrück Distribution
in a Reversible Fluctuation Assay
Matfyz Connections, 26.11.2025

Anna Hlubinová 1, Pavol Bokes 1, Abhyudai Singh 2

1 Department of Applied Mathematics and Statistics, Comenius University, Slovakia
2 Department of Electrical and Computer Engineering, University of Delaware, USA



Table of contents

1. Motivation

2. Model

3. Results

1



Motivation



Motivation

“Do mutations in bacteria arise
randomly, or are they induced
by the environment?”

Fig. 1: Max Delbrück and Salvador Luria in
the laboratory. Source:
https://profiles.nlm.nih.gov/
101584611X127
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Fluctuation test

Fig. 2: Luria-Delbrück experiment.
Source: https://link.springer.com/article/
10.1007/s00018-016-2371-2/figures/1

Fig. 3: Fluctuation test. Source:
https://en.m.wikipedia.org/wiki/
File:Luria-delbruck_diagram.svg#
filehistory
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Fluctuation test

Genetic mutations occur without the presence of external stimuli.

4



Model



Original Model

Classical Luria–Delbrück test assumes irreversible resistance [1] :

1− µ µ 1

• white ball = sensitive cell (”non-mutant”)
• black ball = tolerant cell (”mutant”)
• sensitive mother cell has a tolerant daughter cell with
probability µ

[1] D. A. Kessler and H. Levine, “Large population solution of the stochastic
Luria–Delbrück evolution model,” Proceedings of the National Academy of Sciences,
vol. 110, no. 29, pp. 11682–11687, 2013.
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Our generalization

Our approach, motivated by recent research on drug resistance in
cancer and microbial cells, generalizes the classical framework by
incorporating reversible transitions:

1− µ µ λ 1− λ

• tolerant mother cell has a sensitive daughter cell with
probability λ

We study the probability distribution PN(m) of the number m of
resistant cells in the structurally symmetric fully stochastic
Luria–Delbrück model with a population of size N.
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Master equation

N N+ 1
m− 1

m
(1− µ)

(
1− m

N
)
+ λm

N

(1
−
λ)
m−
1
N

+
µ
( 1−m

−1
N

)

The probability PN(m), that there are exactly m resistant cells in a
population of size N, where 1 ≤ m ≤ N, satisfies the equation:

PN+1(m) =
1
N

{
PN(m− 1)

[
µ(N− (m− 1)) + (1− λ)(m− 1)

]
+ PN(m)

[
(1− µ)(N−m) + λm

]}
.
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Results



Overview

Assume: One sensitive cell as the initial condition: N0 = 1,m0 = 0 .
(Other cases discussed in [2] .)

We examine the asymptotic behavior of PN(m) as µ, λ → 0 across
different regimes:

m = O(1) m = O(N) = N−m N−m = O(1)
N = O(1/µ) left regular coarse-grained right

[2] P. Bokes, A. Hlubinová, and A. Singh, “Reversible transitions in a fluctuation assay
modify the tail of Luria–Delbrück distribution,” Axioms, vol. 12, no. 3, p. 249, 2023.
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Regular coarse-grained solution

m = O(1) m = O(N) = N−m N−m = O(1)
N = O(1/µ) left regular coarse-grained right

• Regular coarse-grained solution: PN(m) ∼ µN
m2 .
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Fig. 4: Initial condition: N0 = 1,m0 = 0. Final population size: N = 2× 105 . Perturbation
parameters: µ = λ = 10−3 . 9



Left boundary-layer solution

m = O(1) m = O(N) = N−m N−m = O(1)
N = O(1/µ) left regular coarse-grained right

• Left boundary-layer solution: PN(m) ∼ 1
µN fLandau

(
m
µN − ln(µN)

)
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Fig. 5: Initial condition: N0 = 1,m0 = 0. Final population size: N = 2× 105 . Perturbation
parameters: µ = λ = 10−3 . 10



Right boundary-layer solution

m = O(1) m = O(N) = N−m N−m = O(1)
N = O(1/µ) left regular coarse-grained right

• Right boundary-layer solution: PN(m) ∼ µ
N FLandau

(N−m
λN − ln(λN)

)
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Fig. 6: Initial condition: N0 = 1,m0 = 0. Final population size: N = 2× 105 . Perturbation
parameters: µ = λ = 10−3 .
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Log-composite solution

m = O(1) m = O(N) = N−m N−m = O(1)
N = O(1/µ) left regular coarse-grained right

• Composite solution: PN(m) ∼ 1
µN fLandau

(
m
µN − lnµN

)
FLandau

(N−m
λN − lnλN

)
.
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Fig. 7: Initial condition: N0 = 1,m0 = 0. Final population size: N = 2× 105 . Perturbation
parameters: µ = λ = 10−3 .
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Main effect of λ

Reversible resistance introduces a boundary layer at the right tail
of the distribution, which is described by the Landau CDF.
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(a) Logarithmic scale for m
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Fig. 8: Comparison of PN(m) for different values of λ. Initial condition: N0 = 1,m0 = 0. Final
population size: N = 2× 105 . Perturbation parameter: µ = 10−3 .
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Thank you for your attention!
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