

Matched Asymptotic Analysis of the Luria–Delbrück Distribution in a Reversible Fluctuation Assay

Matfyz Connections, 26.11.2025

Anna Hlubinová ¹, Pavol Bokes ¹, Abhyudai Singh ²

¹ Department of Applied Mathematics and Statistics, Comenius University, Slovakia

² Department of Electrical and Computer Engineering, University of Delaware, USA

Table of contents

1. Motivation

2. Model

3. Results

Motivation

Motivation

“Do mutations in bacteria arise randomly, or are they induced by the environment?”

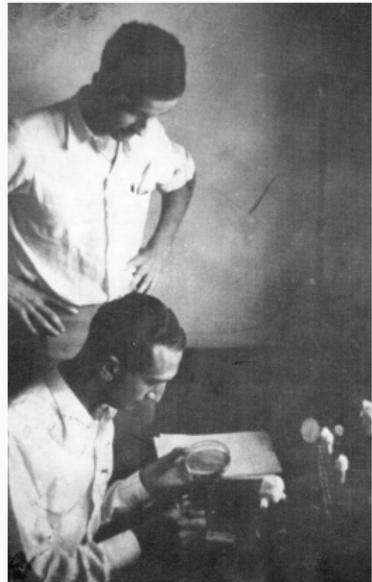


Fig. 1: Max Delbrück and Salvador Luria in the laboratory. Source:
<https://profiles.nlm.nih.gov/101584611X127>

Fluctuation test

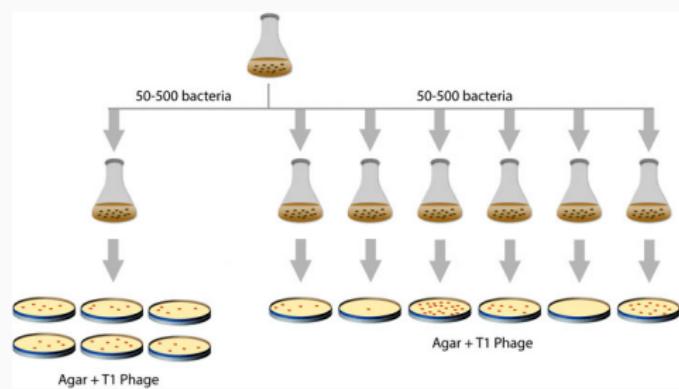


Fig. 2: Luria-Delbrück experiment.

Source: <https://link.springer.com/article/10.1007/s00018-016-2371-2/figures/1>

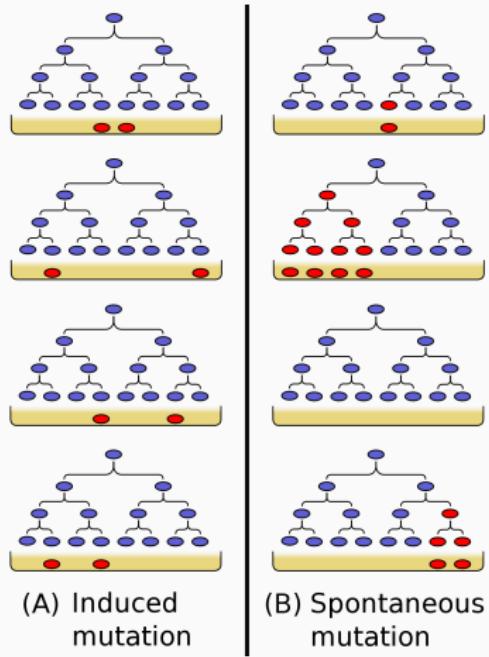
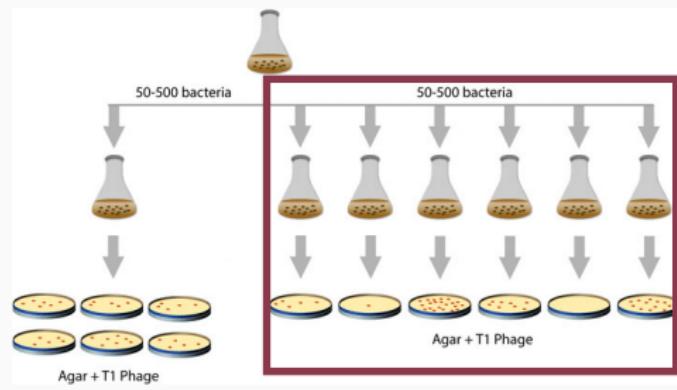
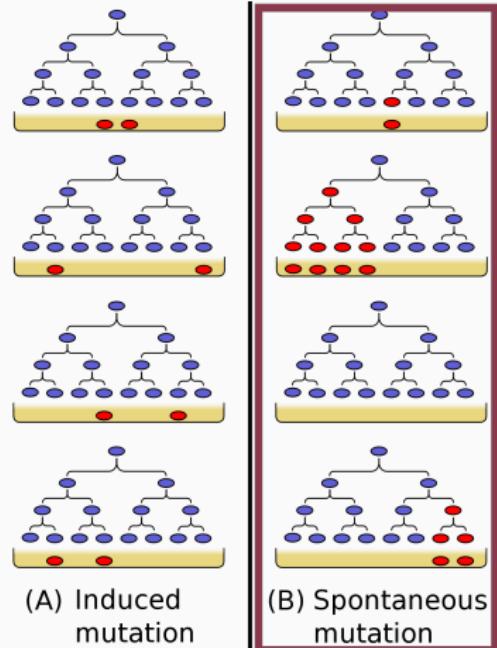


Fig. 3: Fluctuation test. Source: https://en.m.wikipedia.org/wiki/File:Luria-delbrück_diagram.svg#filehistory

Fluctuation test

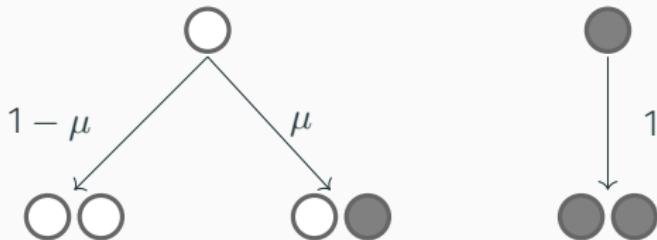


Genetic mutations occur without the presence of external stimuli.

Model

Original Model

Classical Luria–Delbrück test assumes **irreversible resistance** [1] :

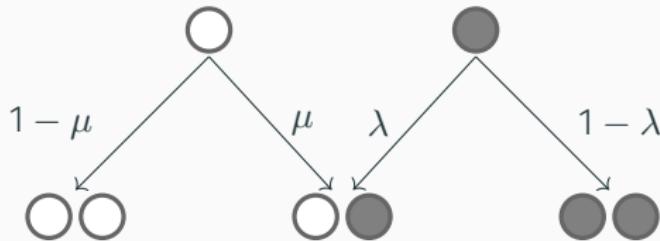


- white ball = **sensitive** cell ("non-mutant")
- black ball = **tolerant** cell ("mutant")
- sensitive mother cell has a tolerant daughter cell with probability μ

[1] D. A. Kessler and H. Levine, "Large population solution of the stochastic Luria–Delbrück evolution model," *Proceedings of the National Academy of Sciences*, vol. 110, no. 29, pp. 11682–11687, 2013.

Our generalization

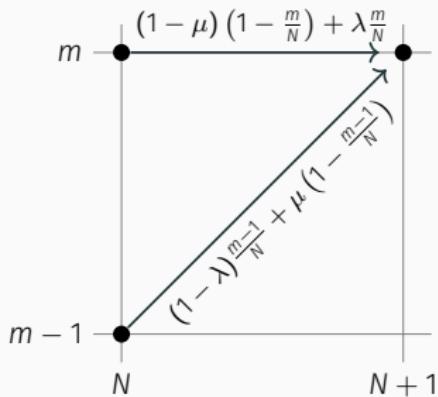
Our approach, motivated by recent research on **drug resistance in cancer and microbial cells**, generalizes the classical framework by incorporating **reversible transitions**:



- tolerant mother cell has a sensitive daughter cell with probability λ

We study the **probability distribution $P_N(m)$ of the number m of resistant cells** in the structurally symmetric fully stochastic Luria–Delbrück model with a population of size N .

Master equation



The probability $P_N(m)$, that there are exactly m resistant cells in a population of size N , where $1 \leq m \leq N$, satisfies the equation:

$$P_{N+1}(m) = \frac{1}{N} \left\{ P_N(m-1) \left[\mu(N - (m-1)) + (1 - \lambda)(m-1) \right] + P_N(m) \left[(1 - \mu)(N - m) + \lambda m \right] \right\}.$$

Results

Overview

Assume: One sensitive cell as the **initial condition**: $N_0 = 1, m_0 = 0$.
(Other cases discussed in [2] .)

We examine the **asymptotic behavior** of $P_N(m)$ as $\mu, \lambda \rightarrow 0$ across different regimes:

	$m = O(1)$	$m = O(N) = N - m$	$N - m = O(1)$
$N = O(1/\mu)$	left	regular coarse-grained	right

[2] P. Bokes, A. Hlubinová, and A. Singh, “Reversible transitions in a fluctuation assay modify the tail of Luria–Delbrück distribution,” *Axioms*, vol. 12, no. 3, p. 249, 2023.

Regular coarse-grained solution

	$m = O(1)$	$m = O(N) = N - m$	$N - m = O(1)$
$N = O(1/\mu)$	left	regular coarse-grained	right

- Regular coarse-grained solution: $P_N(m) \sim \frac{\mu N}{m^2}$.

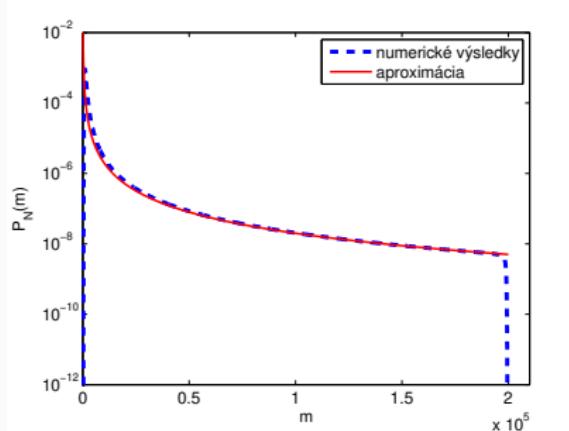


Fig. 4: Initial condition: $N_0 = 1$, $m_0 = 0$. Final population size: $N = 2 \times 10^5$. Perturbation parameters: $\mu = \lambda = 10^{-3}$.

Left boundary-layer solution

	$m = O(1)$	$m = O(N) = N - m$	$N - m = O(1)$
$N = O(1/\mu)$	left	regular coarse-grained	right

- Left boundary-layer solution:
$$P_N(m) \sim \frac{1}{\mu N} f_{\text{Landau}} \left(\frac{m}{\mu N} - \ln(\mu N) \right)$$

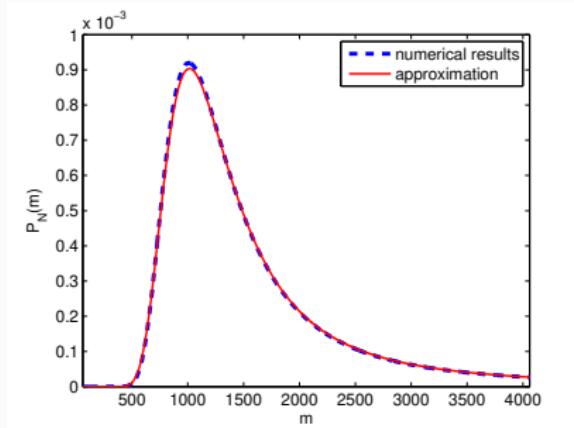


Fig. 5: Initial condition: $N_0 = 1, m_0 = 0$. Final population size: $N = 2 \times 10^5$. Perturbation parameters: $\mu = \lambda = 10^{-3}$.

Right boundary-layer solution

	$m = O(1)$	$m = O(N) = N - m$	$N - m = O(1)$
$N = O(1/\mu)$	left	regular coarse-grained	right

- Right boundary-layer solution:
$$P_N(m) \sim \frac{\mu}{N} F_{\text{Landau}}\left(\frac{N-m}{\lambda N} - \ln(\lambda N)\right)$$

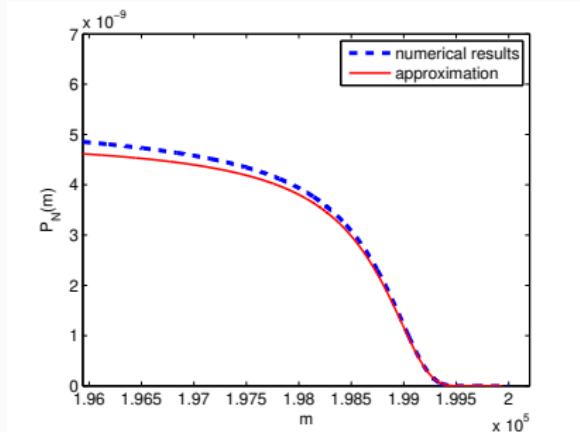


Fig. 6: Initial condition: $N_0 = 1$, $m_0 = 0$. Final population size: $N = 2 \times 10^5$. Perturbation parameters: $\mu = \lambda = 10^{-3}$.

Log-composite solution

	$m = O(1)$	$m = O(N) = N - m$	$N - m = O(1)$
$N = O(1/\mu)$	left	regular coarse-grained	right

- Composite solution:

$$P_N(m) \sim \frac{1}{\mu N} f_{\text{Landau}} \left(\frac{m}{\mu N} - \ln \mu N \right) F_{\text{Landau}} \left(\frac{N-m}{\lambda N} - \ln \lambda N \right).$$

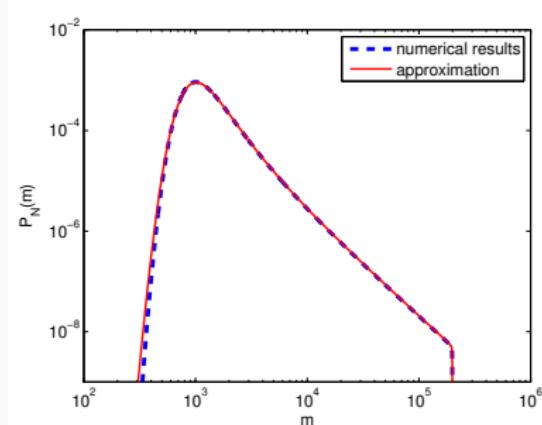
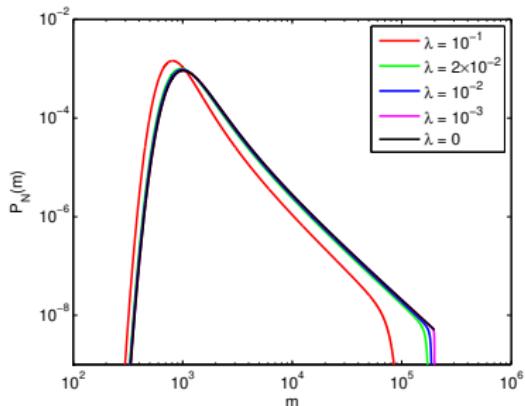


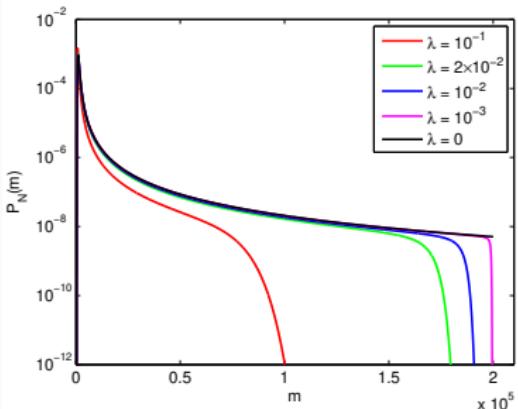
Fig. 7: Initial condition: $N_0 = 1, m_0 = 0$. Final population size: $N = 2 \times 10^5$. Perturbation parameters: $\mu = \lambda = 10^{-3}$.

Main effect of λ

Reversible resistance introduces a boundary layer at the right tail of the distribution, which is described by the Landau CDF.



(a) Logarithmic scale for m



(b) Linear scale for m

Fig. 8: Comparison of $P_N(m)$ for different values of λ . Initial condition: $N_0 = 1$, $m_0 = 0$. Final population size: $N = 2 \times 10^5$. Perturbation parameter: $\mu = 10^{-3}$.

Thank you for your attention!

References i

- D. A. Kessler and H. Levine, “Large population solution of the stochastic luria–delbrück evolution model,” *Proceedings of the National Academy of Sciences*, vol. 110, no. 29, pp. 11682–11687, 2013.
- P. Bokes, A. Hlubinová, and A. Singh, “Reversible transitions in a fluctuation assay modify the tail of luria–delbrück distribution,” *Axioms*, vol. 12, no. 3, p. 249, 2023.