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The expanding universe as we see it today

Thin slice of the 2025 DESI data showing nearby bright
galaxies (yellow), luminous red galaxies (orange), emission-
line galaxies (blue), and quasars (green). Credit: Claire
Lamman/DESI collaboration.

The Dark Energy Spectroscopic Instrument maps the uni-
verse by collecting spectra from millions of galaxies and
quasars. Credit: Marilyn Sargent/Berkeley Lab.

At cosmological scales, the universe is
homogeneous and isotropic . . .
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• . . . and its only dynamics are the expansion or collapse.

• The universe expands, but galaxies themselves do not.

• The expansion slows massive particles down. For photons, it causes a redshift,
which is not due to the Doppler effect.

• By measuring a galaxy’s redshift, we gain insight into the universe’s expansion rate
in the past.
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• Our universe is almost flat and has a critical density of 8.6× 10−27 kg/m3.

• The expansion rate today, known as the Hubble constant, is

H0 =
da/dt

a

∣∣∣∣
today

= (67.7± 0.4)× km s−1 Mpc−1.

S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.030001
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accelerates the expansion

relative motion of galaxies,
rotational curves, . . .
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• No large-scale structures have formed yet.
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• The universe is expanding and cooling.

• No large-scale structures have formed yet.

The radiation-dominated universe is a homogeneous,
hot, and dense mixture of particles.



Proton anti-proton annihilation symmetric freeze-out
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• Baryons (protons and neutrons) form at T ≈ 150 MeV (1.7× 1012 K)

• Annihilation and production remain in equilibrium until T ≈ 20 MeV (2.3× 1011 K).

• The resulting density today would be approximately 10−10 protons/m3.
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We need an excess of protons over antiprotons!
For every 1010 antiprotons, there must be one extra proton.
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Does the Standard Model of elementary particles
describe the early universe?

• A viable dark matter candidate is missing, so we
cannot account for Ωc,0.

• We have no explanation for the observed baryon
abundance and cannot account for Ωb,0.

New physics needed to explain
the matter in the universe!
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Baryogenesis and leptogenesis

• Processes violating baryon number.

• Independent C - and CP-symmetry violation.

• Interactions out of thermal equilibrium.
A.D. Sakharov, 1991 Sov. Phys. Usp. 34 392

C : particle ↔ antiparticle, P : left ↔ right, T : past ↔ future.

https://iopscience.iop.org/article/10.1070/PU1991v034n05ABEH002497
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• Independent C - and CP-symmetry violation.

• Interactions out of thermal equilibrium.
A.D. Sakharov, 1991 Sov. Phys. Usp. 34 392

C : particle ↔ antiparticle, P : left ↔ right, T : past ↔ future.

Under reasonable assumptions (space-time symmetries, causality), any theory
of particle interactions must be CPT -invariant.

J. Schwinger, Phys. Rev. 82, 914 (1951)

https://iopscience.iop.org/article/10.1070/PU1991v034n05ABEH002497
https://doi.org/10.1103/PhysRev.82.914


Baryogenesis and leptogenesis

• In leptogenesis, a lepton number asymmetry is generated first and then converted
into a baryon asymmetry through Standard Model interactions.

M. Fukugita, T. Yanagida, Phys. Lett. B 174(1), 45 (1986)

γN→`H =
# of N → `H decays

unit volume × unit time

• We require γeq
N→`H > γeq

N→¯̀H̄ and this necessarily implies γeq
`H→¯̀H̄ > γeq

¯̀H̄→`H .

• In thermal equilibrium, decay and scattering asymmetries cancel each other, so a
departure from equilibrium is required.

• Stable dark matter candidate still missing.

https://www.sciencedirect.com/science/article/abs/pii/0370269386911263


Leptogenesis and dark matter in a minimal model

Top-down approach

• Well-motivated (neutrino masses,
naturalness).

• Built upon new symmetries.

• Examples: SUSY, GUTs, extended
Higgs sectors, . . .

Bottom-up approach

• Minimal in terms of new particles and
interactions.

• Effective theory below some energy
scale Λ (power series in T/Λ).



Howminimal can an effective theory be?

• Two new particles (a heavy neutral fermion f , a light neutral scalar S) stabilized by
a Z2 symmetry.

• One portal operator and the Weinberg operator (leads to neutrino masses),

Leff =
λ

Λ
Sf̄ PL`H +

λ′

Λ
H ¯̀cPL`H + H.c.

• Apart form asymmetric decays and scatterings, the model implies asymmetries in
non-standard reactions including spectator particles, such as `HS → ¯̀H̄S (with no
change in state of S).

T. Blažek, P. Maták, J. Ramaj, M. Sabová, Eur. Phys. J. C 85 (2025) 801

Thank you for your attention!

https://link.springer.com/article/10.1140/epjc/s10052-025-14543-w
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