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The expanding universe as we see it today

Thin slice of the 2025 DESI data showing nearby bright
galaxies (yellow), luminous red galaxies (orange), emission-
line galaxies (blue), and quasars (green). Credit: Claire
Lamman/DESI collaboration.

The Dark Energy Spectroscopic Instrument maps the uni-
verse by collecting spectra from millions of galaxies and
quasars. Credit: Marilyn Sargent/Berkeley Lab.
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At cosmological scales, the universe is
Thin slice of the 2025 DESI data showing nearby bright hOHlogeneOuS and isotropic L.

galaxies (yellow), luminous red galaxies (orange), emission-
line galaxies (blue), and quasars (green). Credit: Claire
Lamman/DESI collaboration.
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... and its only dynamics are the expansion or collapse.
The universe expands, but galaxies themselves do not.

The expansion slows massive particles down. For photons, it causes a redshift,
which is not due to the Doppler effect.

By measuring a galaxy’s redshift, we gain insight into the universe’s expansion rate
in the past.



The expanding universe as we see it today
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e Our universe is almost flat and has a critical density of 8.6 x 10727 kg/m?.

e The expansion rate today, known as the Hubble constant, is

_ da/dt
a

Hy = (67.740.4) x kms~ ! Mpc™!.

today

S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.030001
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Cold Dark Matter S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.030001

The expanding universe as we see it today
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accelerates the expansion

relative motion of galaxies,
rotational curves, ...

mostly hydrogen
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S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.030001

Radiation-dominated universe
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e The universe is expanding and cooling.

e No large-scale structures have formed yet.
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e The universe is expanding and cooling.

e No large-scale structures have formed yet.

The radiation-dominated universe is a homogeneous,
hot, and dense mixture of particles.




Proton anti-proton annihilation symmetric freeze-out
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e Baryons (protons and neutrons) form at T ~ 150 MeV (1.7 x 10'2 K)
e Annihilation and production remain in equilibrium until 7"~ 20 MeV (2.3 x 10! K).

e The resulting density today would be approximately 10719 protons/m?.
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Proton anti-proton annihilation symmetric freeze-out
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We need an excess of protons over antiprotons!
For every 100 antiprotons, there must be one extra proton.
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Standard Model and the early universe

Does the Standard Model of elementary particles
describe the early universe?

e A viable dark matter candidate is missing, so we
cannot account for €2, g.

e We have no explanation for the observed baryon
abundance and cannot account for €2 .

New physics needed to explain
the matter in the universe!




Standard Model and the early universe

e o ° ° ° ° B Observed dark matter
+ ‘ N and baryon density.




Baryogenesis and leptogenesis

e Processes violating baryon number.
e Independent C- and CP-symmetry violation.

e Interactions out of thermal equilibrium.

A.D. Sakharov, 1991 Sov. Phys. Usp. 34 392

C' : particle «» antiparticle, P : left <> right, 7 : past < future.


https://iopscience.iop.org/article/10.1070/PU1991v034n05ABEH002497
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e Processes violating baryon number.
e Independent C- and CP-symmetry violation.

e Interactions out of thermal equilibrium.

A.D. Sakharov, 1991 Sov. Phys. Usp. 34 392

C' : particle «» antiparticle, P : left <> right, 7 : past < future.

Under reasonable assumptions (space-time symmetries, causality), any theory
of particle interactions must be CPT-invariant.

J. Schwinger, Phys. Rev. 82, 914 (1951)


https://iopscience.iop.org/article/10.1070/PU1991v034n05ABEH002497
https://doi.org/10.1103/PhysRev.82.914

Baryogenesis and leptogenesis

e In leptogenesis, a lepton number asymmetry is generated first and then converted
into a baryon asymmetry through Standard Model interactions.

M. Fukugita, T. Yanagida, Phys. Lett. B 174(1), 45 (1986)

_ #of N — (H decays
TN = unit volume x unit time

o We require 7y, and this necessarily implies 7% .-
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e In thermal equilibrium, decay and scattering asymmetries cancel each other, so a
departure from equilibrium is required.

e Stable dark matter candidate still missing.


https://www.sciencedirect.com/science/article/abs/pii/0370269386911263

Leptogenesis and dark matter in a minimal model

Top-down approach Bottom-up approach
e Well-motivated (neutrino masses, e Minimal in terms of new particles and
naturalness). interactions.
e Built upon new symmetries. e Effective theory below some energy

scale A (power series in T'/A).
e Examples: SUSY, GUTs, extended

Higgs sectors, ...



How minimal can an effective theory be?

e Two new particles (a heavy neutral fermion f, a light neutral scalar S) stabilized by
a Zo symmetry.

e One portal operator and the Weinberg operator (leads to neutrino masses),
/

A - N
Leﬂ‘ = XSfPLEH + KHKCPLKH + H.c.

e Apart form asymmetric decays and scatterings, the model implies asymmetries in
non-standard reactions including spectator particles, such as ¢HS — ¢HS (with no
change in state of .5).

T. Blazek, P. Matédk, J. Ramaj, M. Sabova, Eur. Phys. J. C 85 (2025) 801


https://link.springer.com/article/10.1140/epjc/s10052-025-14543-w
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Thank you for your attention!
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