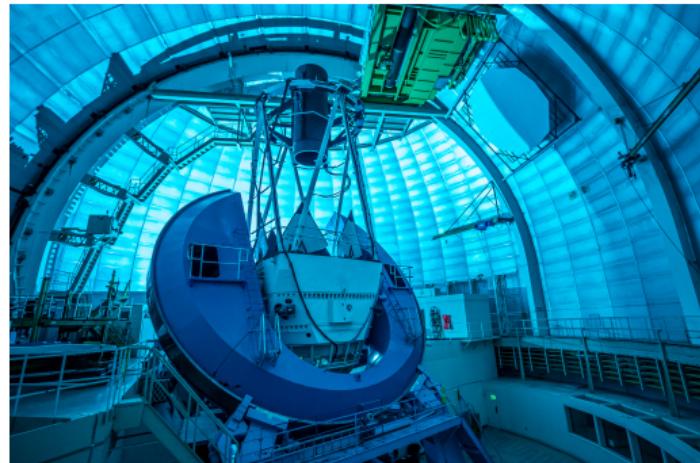
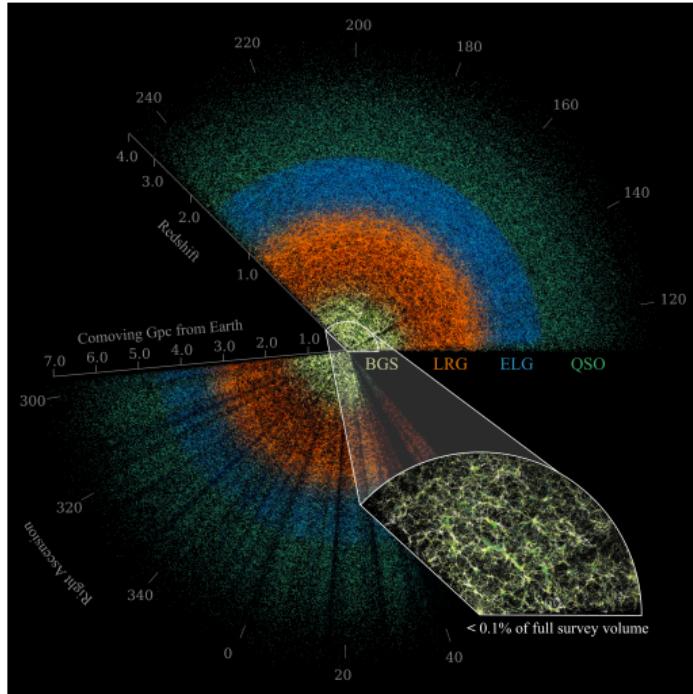


Towards the minimal effective theory for leptogenesis, dark matter, and neutrino masses

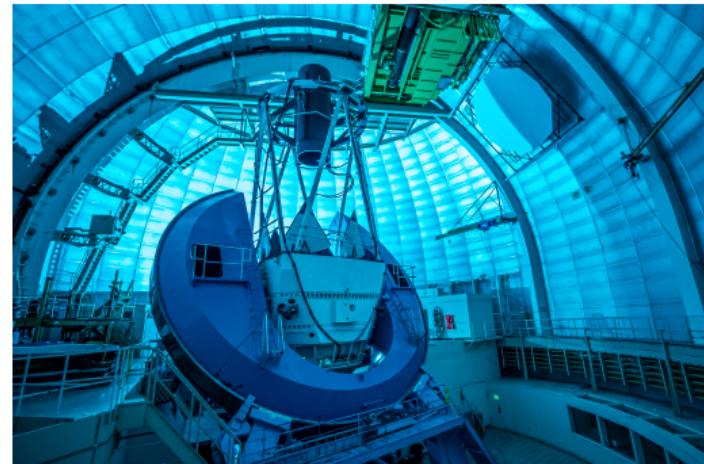
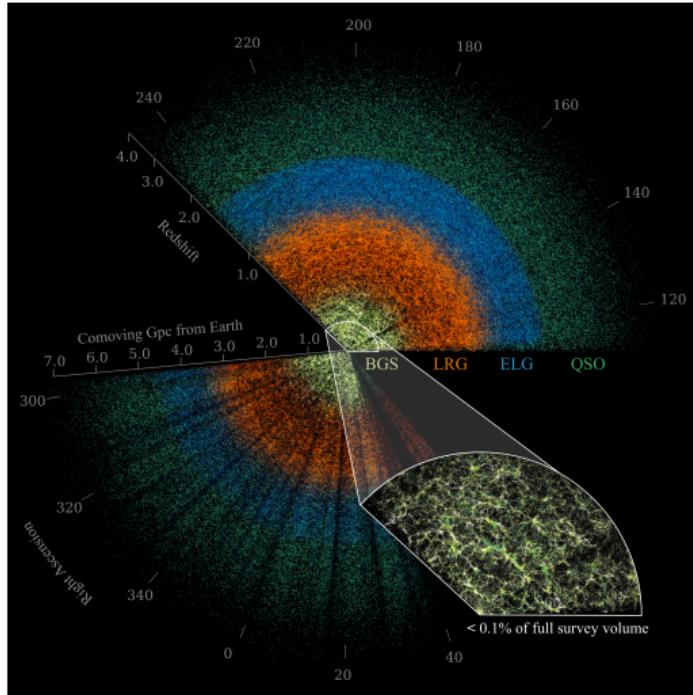
Peter Maták

In collaboration with T. Blažek, J. Ramaj and M. Sabová

FACULTY OF MATHEMATICS,
PHYSICS AND INFORMATICS
Comenius University
Bratislava

November 26, 2025



MATFYZ
CONNECTIONS

The expanding universe as we see it today

The Dark Energy Spectroscopic Instrument maps the universe by collecting spectra from millions of galaxies and quasars. Credit: Marilyn Sargent/Berkeley Lab.

The expanding universe as we see it today

The Dark Energy Spectroscopic Instrument maps the universe by collecting spectra from millions of galaxies and quasars. Credit: Marilyn Sargent/Berkeley Lab.

At cosmological scales, the universe is homogeneous and isotropic . . .

The expanding universe as we see it today

$$\mathbf{r}(t) = \mathbf{r}(t_0)a(t)$$

$$\left(\frac{da/dt}{a}\right)^2 = \frac{8\pi G}{3}\rho(a)$$

- ... and its only dynamics are the expansion or collapse.

The expanding universe as we see it today

$$\mathbf{r}(t) = \mathbf{r}(t_0)a(t)$$

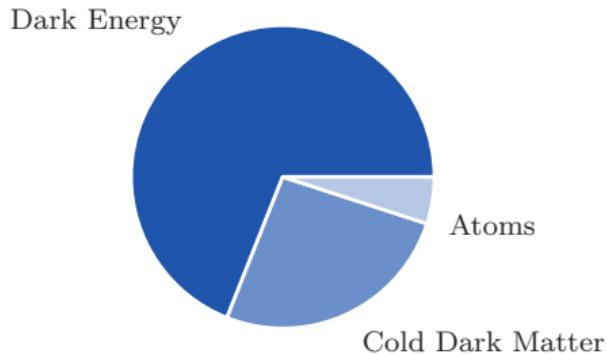
$$\left(\frac{da/dt}{a}\right)^2 = \frac{8\pi G}{3}\rho(a)$$

- ... and its only dynamics are the expansion or collapse.
- The universe expands, but galaxies themselves do not.
- The expansion slows massive particles down. For photons, it causes a redshift, which is not due to the Doppler effect.
- By measuring a galaxy's redshift, we gain insight into the universe's expansion rate in the past.

The expanding universe as we see it today

$$\rho(a) = \rho_{\text{crit},0} \times \left(\Omega_{\Lambda,0} + \frac{\Omega_{m,0}}{a^3} + \frac{\Omega_{r,0}}{a^4} \right)$$

$$\left(\frac{da/dt}{a} \right)^2 = \frac{8\pi G}{3} \rho(a)$$


- Our universe is almost flat and has a critical density of $8.6 \times 10^{-27} \text{ kg/m}^3$.
- The expansion rate today, known as the Hubble constant, is

$$H_0 = \left. \frac{da/dt}{a} \right|_{\text{today}} = (67.7 \pm 0.4) \times \text{km s}^{-1} \text{ Mpc}^{-1}.$$

The expanding universe as we see it today

$$\rho(a) = \rho_{\text{crit},0} \times \left(\Omega_{\Lambda,0} + \frac{\Omega_{m,0}}{a^3} + \frac{\Omega_{r,0}}{a^4} \right)$$

$$\left(\frac{da/dt}{a} \right)^2 = \frac{8\pi G}{3} \rho(a)$$

$$\Omega_{\Lambda,0} = (68.9 \pm 0.60)\%$$

$$\left. \begin{array}{l} \Omega_{c,0} = (26.0 \pm 0.36)\% \\ \Omega_{b,0} = (4.89 \pm 0.07)\% \end{array} \right\} \Omega_{m,0} = (31.1 \pm 0.6)\%$$

$$\Omega_{r,0} = (5.38 \pm 0.15) \times 10^{-5} + \text{neutrinos}$$

S. Navas *et al.* (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

The expanding universe as we see it today

$$\rho(a) = \rho_{\text{crit},0} \times \left(\Omega_{\Lambda,0} + \frac{\Omega_{m,0}}{a^3} + \frac{\Omega_{r,0}}{a^4} \right)$$

$$\left(\frac{da/dt}{a} \right)^2 = \frac{8\pi G}{3} \rho(a)$$

accelerates the expansion

$$\Omega_{\Lambda,0} = (68.9 \pm 0.60)\%$$

relative motion of galaxies,
rotational curves, ...

$$\left. \begin{array}{l} \Omega_{c,0} = (26.0 \pm 0.36)\% \\ \Omega_{b,0} = (4.89 \pm 0.07)\% \end{array} \right\} \Omega_{m,0} = (31.1 \pm 0.6)\%$$

$$\Omega_{r,0} = (5.38 \pm 0.15) \times 10^{-5} + \text{neutrinos}$$

mostly hydrogen

S. Navas *et al.* (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

Radiation-dominated universe

$$\rho(a) = \rho_{\text{crit},0} \times \left(\Omega_{\Lambda,0} + \frac{\Omega_{m,0}}{a^3} + \frac{\Omega_{r,0}}{a^4} \right) \approx \rho_{\text{crit},0} \times \frac{\Omega_{r,0}}{a^4} \quad \text{for } a \ll 10^{-4}$$

$$\left. \begin{array}{l} t \ll t_{\text{eq}} \approx 50000 \text{ y} \\ T \gg T_{\text{eq}} \approx 0.25 \text{ eV} \simeq 10^4 \text{ K} \end{array} \right\} a(t) \propto t^{1/2}$$

Radiation-dominated universe

$$\rho(a) = \rho_{\text{crit},0} \times \left(\Omega_{\Lambda,0} + \frac{\Omega_{m,0}}{a^3} + \frac{\Omega_{r,0}}{a^4} \right) \approx \rho_{\text{crit},0} \times \frac{\Omega_{r,0}}{a^4} \quad \text{for} \quad a \ll 10^{-4}$$

$$\left. \begin{array}{l} t \ll t_{\text{eq}} \approx 50000 \text{ y} \\ T \gg T_{\text{eq}} \approx 0.25 \text{ eV} \simeq 10^4 \text{ K} \end{array} \right\} \frac{T}{10^{10} \text{ K}} \simeq \left(\frac{1 \text{ s}}{t} \right)^{1/2}$$

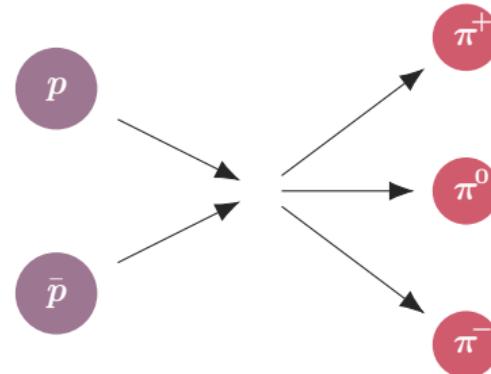
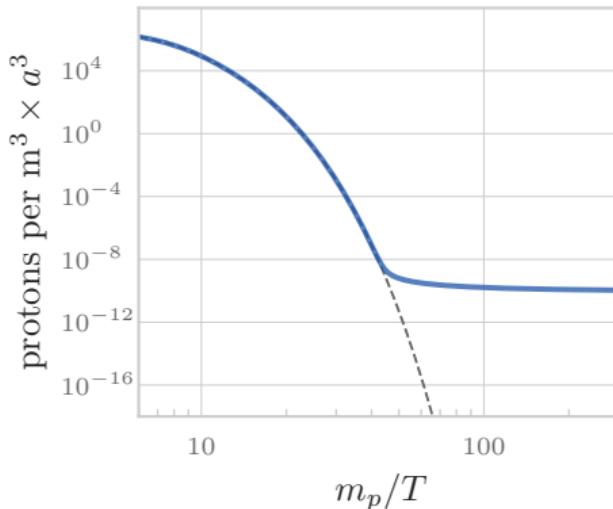
Radiation-dominated universe

$$\rho(a) = \rho_{\text{crit},0} \times \left(\Omega_{\Lambda,0} + \frac{\Omega_{m,0}}{a^3} + \frac{\Omega_{r,0}}{a^4} \right) \approx \rho_{\text{crit},0} \times \frac{\Omega_{r,0}}{a^4} \quad \text{for } a \ll 10^{-4}$$

$$\left. \begin{array}{l} t \ll t_{\text{eq}} \approx 50000 \text{ y} \\ T \gg T_{\text{eq}} \approx 0.25 \text{ eV} \simeq 10^4 \text{ K} \end{array} \right\} \frac{T}{10^{10} \text{ K}} \simeq \left(\frac{1 \text{ s}}{t} \right)^{1/2}$$

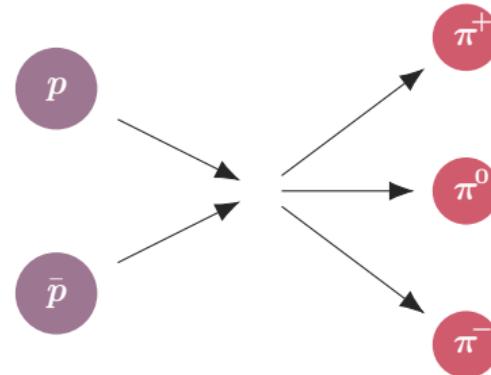
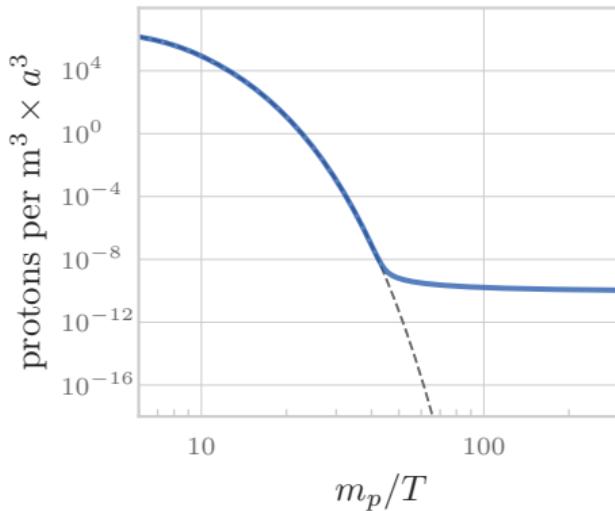
- The universe is expanding and cooling.
- No large-scale structures have formed yet.

Radiation-dominated universe

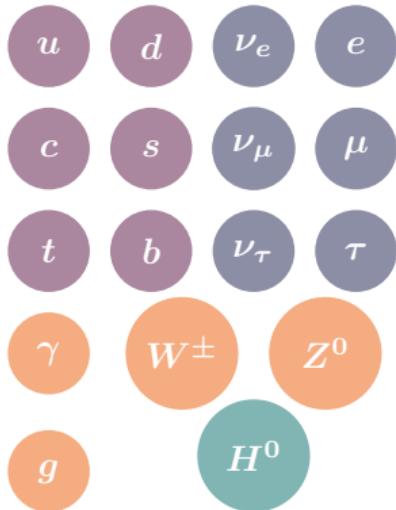


$$\rho(a) = \rho_{\text{crit},0} \times \left(\Omega_{\Lambda,0} + \frac{\Omega_{m,0}}{a^3} + \frac{\Omega_{r,0}}{a^4} \right) \approx \rho_{\text{crit},0} \times \frac{\Omega_{r,0}}{a^4} \quad \text{for } a \ll 10^{-4}$$

$$\left. \begin{array}{l} t \ll t_{\text{eq}} \approx 50000 \text{ y} \\ T \gg T_{\text{eq}} \approx 0.25 \text{ eV} \simeq 10^4 \text{ K} \end{array} \right\} \frac{T}{10^{10} \text{ K}} \simeq \left(\frac{1 \text{ s}}{t} \right)^{1/2}$$

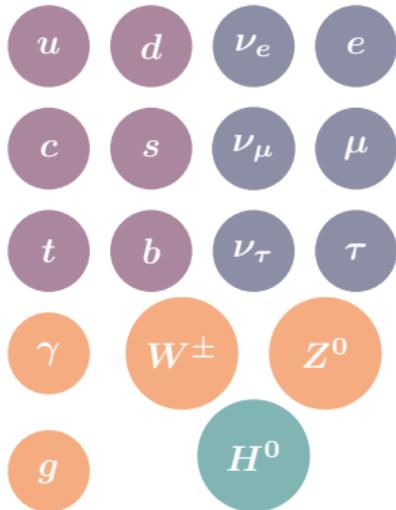
- The universe is expanding and cooling.
- No large-scale structures have formed yet.



The radiation-dominated universe is a homogeneous, hot, and dense mixture of particles.

Proton anti-proton annihilation symmetric freeze-out


- Baryons (protons and neutrons) form at $T \approx 150$ MeV (1.7×10^{12} K)
- Annihilation and production remain in equilibrium until $T \approx 20$ MeV (2.3×10^{11} K).
- The resulting density today would be approximately 10^{-10} protons/m³.

Proton anti-proton annihilation symmetric freeze-out


We need an excess of protons over antiprotons!
For every 10^{10} antiprotons, there must be one extra proton.

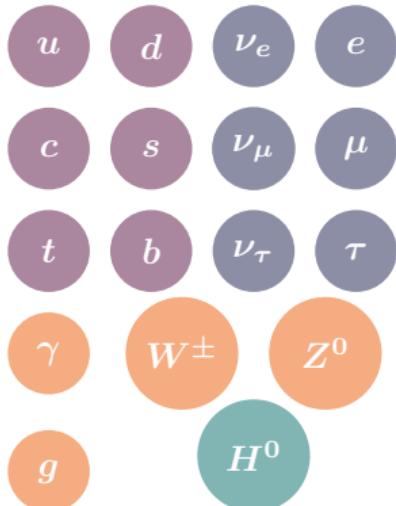
Standard Model and the early universe

Does the Standard Model of elementary particles describe the early universe?

Standard Model and the early universe

Does the Standard Model of elementary particles describe the early universe?

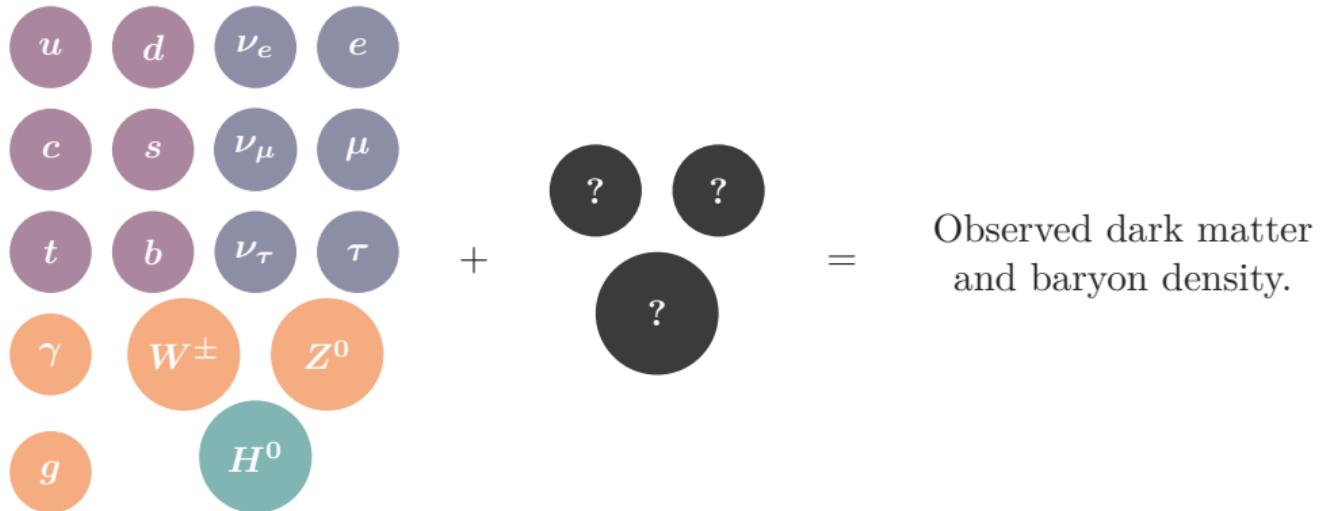
- A viable dark matter candidate is missing, so we cannot account for $\Omega_{c,0}$.


Standard Model and the early universe

Does the Standard Model of elementary particles describe the early universe?

- A viable dark matter candidate is missing, so we cannot account for $\Omega_{c,0}$.
- We have no explanation for the observed baryon abundance and cannot account for $\Omega_{b,0}$.

Standard Model and the early universe



Does the Standard Model of elementary particles describe the early universe?

- A viable dark matter candidate is missing, so we cannot account for $\Omega_{c,0}$.
- We have no explanation for the observed baryon abundance and cannot account for $\Omega_{b,0}$.

New physics needed to explain the matter in the universe!

Standard Model and the early universe

Baryogenesis and leptogenesis

- Processes violating baryon number.
- Independent C - and CP -symmetry violation.
- Interactions out of thermal equilibrium.

A.D. Sakharov, 1991 Sov. Phys. Usp. 34 392

C : particle \leftrightarrow antiparticle, P : left \leftrightarrow right, T : past \leftrightarrow future.

Baryogenesis and leptogenesis

- Processes violating baryon number.
- Independent C - and CP -symmetry violation.
- Interactions out of thermal equilibrium.

A.D. Sakharov, 1991 Sov. Phys. Usp. 34 392

C : particle \leftrightarrow antiparticle, P : left \leftrightarrow right, T : past \leftrightarrow future.

Under reasonable assumptions (space-time symmetries, causality), any theory of particle interactions must be CPT -invariant.

J. Schwinger, Phys. Rev. 82, 914 (1951)

Baryogenesis and leptogenesis

- In **leptogenesis**, a lepton number asymmetry is generated first and then converted into a baryon asymmetry through Standard Model interactions.

M. Fukugita, T. Yanagida, Phys. Lett. B 174(1), 45 (1986)

$$\gamma_{N \rightarrow \ell H} = \frac{\# \text{ of } N \rightarrow \ell H \text{ decays}}{\text{unit volume} \times \text{unit time}}$$

- We require $\gamma_{N \rightarrow \ell H}^{\text{eq}} > \gamma_{N \rightarrow \bar{\ell} \bar{H}}^{\text{eq}}$ and this necessarily implies $\gamma_{\ell H \rightarrow \bar{\ell} \bar{H}}^{\text{eq}} > \gamma_{\bar{\ell} \bar{H} \rightarrow \ell H}^{\text{eq}}$.
- In thermal equilibrium, decay and scattering asymmetries cancel each other, so a departure from equilibrium is required.
- Stable dark matter candidate still missing.

Leptogenesis and dark matter in a minimal model

Top-down approach

- Well-motivated (neutrino masses, naturalness).
- Built upon new symmetries.
- Examples: SUSY, GUTs, extended Higgs sectors, ...

Bottom-up approach

- Minimal in terms of new particles and interactions.
- Effective theory below some energy scale Λ (power series in T/Λ).

How minimal can an effective theory be?

- Two new particles (a heavy neutral fermion f , a light neutral scalar S) stabilized by a \mathbb{Z}_2 symmetry.
- One portal operator and the Weinberg operator (leads to neutrino masses),

$$L_{\text{eff}} = \frac{\lambda}{\Lambda} S \bar{f} P_L \ell H + \frac{\lambda'}{\Lambda} H \bar{\ell}^c P_L \ell H + \text{H.c.}$$

- Apart from asymmetric decays and scatterings, the model implies asymmetries in non-standard reactions including spectator particles, such as $\ell H S \rightarrow \bar{\ell} \bar{H} S$ (with no change in state of S).

How minimal can an effective theory be?

- Two new particles (a heavy neutral fermion f , a light neutral scalar S) stabilized by a \mathbb{Z}_2 symmetry.
- One portal operator and the Weinberg operator (leads to neutrino masses),

$$L_{\text{eff}} = \frac{\lambda}{\Lambda} S \bar{f} P_L \ell H + \frac{\lambda'}{\Lambda} H \bar{\ell}^c P_L \ell H + \text{H.c.}$$

- Apart from asymmetric decays and scatterings, the model implies asymmetries in non-standard reactions including spectator particles, such as $\ell H S \rightarrow \bar{\ell} \bar{H} S$ (with no change in state of S).

T. Blažek, P. Maták, J. Ramaj, M. Sabová, Eur. Phys. J. C 85 (2025) 801

Thank you for your attention!