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LLMs - what are we dealing with

Llama2-70B:

(embed tokens): Embedding(32000, 8192)

80 x LlamaDecoderLayer(

(self attn): LlamaAttention(

(q proj): Linear(8192, 8192)

(k proj): Linear(8192, 1024)

(v proj): Linear(8192, 1024)

(o proj): Linear(8192, 8192)

)

(mlp): LlamaMLP(

(gate proj): Linear(8192, 28672)

(up proj): Linear(8192, 28672)

(down proj): Linear(28672, 8192)

)

)

(lm head): Linear(8192, 32000)*

*Some nonparametric parts left out for clarity:
LlamaRotaryEmbedding(), SiLUActivation(), LlamaRMSNorm()

• 70b Float16 parameters

• 140GB of memory

• 99% of it is matrix multiplication

• HW needs for inference:
• 2x 80-GB A100 GPUs
• 4x 40-GB A100 GPUs
• 2x 80-GB H100 GPUs

$50k to buy

$3k/month to rent
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How to make LLMs smaller
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Smaller means faster for local LLMs
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Layer-wise pruning

• Hard to tune the whole model at once

• Optimize each layer separately

• Capture calibration input X for each layer

• Solve:

minWp ||XW − XWp||22

s.t. ||Wp||0 ≤ S



Somebody tells me sparsity mask M

minWp ||XW − XWp||22

s.t. Wp ⊙ (1−M) = 0

W has shape n ×m

m independent linear regressions ((XTX )−1XT y): O(mn3) time.

Gradient descent (XT (XW − XWp)⊙M): O(mn2) per iteration, but many iterations.

Can we do better?



Somebody tells me sparsity mask M

minWp ||XW − XWp||22

s.t. Wp ⊙ (1−M) = 0

This is just a constrained optimization problem

Use Alternating Direction Method of Multipliers (ADMM) to solve it

”Distributed Optimization and Statistical Learning via the Alternating Direction Method of

Multipliers” by Boyd is a really good reading.



ADMM recap - augmented Lagrangian

minimize f (x)

subject to Ax = B

Lρ(x , y) = f (x) + yT (Ax − b) + (ρ/2)||Ax − b||22

xk+1 = argminx Lρ(x , y
k)

yk+1 = yk + ρ(Axk+1 − b)



ADMM recap - problem split

minimize f (x) + g(z)

subject to Ax + Bz = c

Lρ(x , z , y) = f (x) + g(z) + yT (Ax + Bz − c) + (ρ/2)||Ax + Bz − c||22

xk+1 = argminx Lρ(x , z
k , yk)

zk+1 = argminz Lρ(x
k+1, z , yk)

yk+1 = yk + ρ(Axk+1 + Bzk+1 − c)



ADMM recap - substitution

minimize f (x) + g(z)

subject to Ax + Bz = c

u =
1

ρ
y

xk+1 = argminx f (x) + (ρ/2)||Ax + Bzk − c + uk ||22
zk+1 = argminz g(z) + (ρ/2)||Axk+1 + Bz − c + uk ||22
uk+1 = uk + Axk+1 + Bzk+1 − c



ADMM for constrained optimization

minimize f (x)

subject to x ∈ C

Let g(z) = 0 if z ∈ C otherwise g(z) = inf.

minimize f (x) + g(z)

subject to x = z

xk+1 = argminx f (x) + (ρ/2)||x − zk + uk ||22
zk+1 = argminz g(z) + (ρ/2)||xk+1 − z + uk ||22
uk+1 = uk + xk+1 − zk+1

z-step is just a L2 projection of x + u upon C .
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Back to masked regression

min
Wp

||XW − XWp||22

s.t. Wp ⊙ (1−M) = 0

W k+1
p = (XTX + ρI )−1(XTXW + ρ(Z k − Uk))

Z k+1 = M ⊙ (W k+1
p + Uk)

Uk+1 = Uk +W k+1
p − Z k+1



Update rule discussion

W k+1
p = (XTX + ρI )−1(XTXW + ρ(Z k − Uk))

Z k+1 = M ⊙ (W k+1
p + Uk)

Uk+1 = Uk +W k+1
p − Z k+1

• Precompute (XTX + ρI )−1 and XTXW .

• Update complexity same as gradient descent step O(mn2)

• W update is similar to Ridge regression. Here, we pull harder for terms we want to
get to zero.



How to find mask

• Prune elements with smallest W + U

• Gradually increase sparsity from zero to target one over first p iterations (using cubic
schedule)

• Usually we prune during the first 15 iterations out of 20

W k+1
p = (XTX + ρI )−1(XTXW + ρ(Z k − Uk))

Mk+1 = find largest(Wk+1
p + Uk)

Z k+1 = Mk+1 ⊙ (W k+1
p + Uk)

Uk+1 = Uk +W k+1
p − Z k+1
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Results

Table: Perplexity of pruned LLaMA-2 variants on WikiText

Method Sparsity 7B 13 B 70B

Dense 0 % 5.12 4.57 3.12

SparseGPT 50 % 6.51 5.63 3.98
ADMM-Grad 50 % 6.33 5.52 3.95
SparseGPT 60 % 9.58 7.80 4.98
ADMM-Grad 60 % 8.70 7.09 4.81
SparseGPT 2:4 10.17 8.32 5.40
ADMM-Grad 2:4 9.74 7.78 5.19

More in: ”Fast and Effective Weight Update for Pruned Large Language Models.” TMLR 2024.





What if?

Factorize each weight matrix into two sparse matrices (Double sparse factorization).

min
A,B
||W − AB||22 (1)

s.t. ||A||0 + ||B||0 ≤ S (2)

Generalizes low rank, monarch, ordinary sparsity (sort of).



Heuristic solution idea

• Run alternating minimization (fix A find B via ADMM, ...)

• In later iterations, reuse solution from previous steps as starting point

• Do now solve problem too hard during first steps



Alternating minimization

Initialize A(0),B(0)

U
(0)
a = 0 · A,U(0)

b = 0 · B
for k = 1..n do
ρ0 = min(1.0, k/(n − 3))3

B(k),U
(k)
b ← solve argmin ||AB −W ||F , st. ||B||0 ≤ zb via m iterations of ADMM

with starting point Bk−1,U
(k−1)
b and starting ρ0

A(k),U
(k)
a ← solve argmin ||AB −W ||F , st. ||A||0 ≤ za via m iterations of ADMM

with starting point Ak−1,U
(k−1)
a and starting ρ0

end for



Results (16 bits per non-zero, binary mask)
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More in: ”Two Sparse Matrices are Better than One: Sparsifying Neural Networks with Double

Sparse Factorization.” ICLR 2025.







Quantization is still better than sparsity

Table: Perplexity of pruned LLaMA-2-7B

Method Size reduction Perplexity
Dense - 5.12

50% ADMM /2 6.33
50% Double sparse /2 6.12

8bit naive quantization /2 5.13

4bit naive quantization /4 5.71
4bit good quantization /4 5.17
2bit good quantization /8 5.86

Silver lining: Very good quantization methods are impossible to finetune.



Combine Double sparsity with quantization?

Works, but still limited HW support.

Different extreme idea: Factorize into binary (±1) matrices.



Almost binary neural networks

Turning a matrix into binary is quite drastic

Add scaling factors for each column and row

We want: W ≈ A±1 ⊙ (abT )

Solution:
A±1 = sign(W )
a, b are rank-1 decomposition of |W |

We will call this SVID

Good news: Multiplication by ±1 matrix can be
implemented using additions.

⊙ . ⊙

X

 .

X
W

b a
A±1

Xu, Yuzhuang, et al. ”Onebit: Towards extremely low-bit large language models.” NeurIPS 2024



Double binary factorization (DBF)

⊙ . ⊙ . ⊙

X

 .

X
W

b m
aB±1 A±1

W ≈ DbB±1DmA±1Da

Replace most of multiplications with
additions

Varying middle dimension determines
compression ratio

Can be finetuned if you are brave enough
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Finding DBF

We want: W ≈ (DbB±1Dm1)(Dm2A±1Da) = BA

Fix B, find A, ... How to find A? ADMM!

min
A
||W − BA||22

s.t. A = Dm2A±1Da

X k+1 = (BTB + ρI )−1(BTW + ρ(Ak − Uk))

A±1 = sign(X k+1)

Dm2 ,Da = rank-1(|X k+1|)
Ak+1 = Dm2A±1Da

Uk+1 = Uk + X k+1 − Ak+1
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DBF results

Table: Results for Llama2-7B.

Avg. bits Method Wikitext ppl.

16 Dense 5.12

2 QTIP 5.86
2 DBF 6.09

1 OneBit 9.73
1 DBF 8.76

Table: Results for Llama3-8B.

Avg. bits Method Wikitext ppl.

16 Dense 5.54

2 QTIP 7.33
2 DBF 7.30

1.1 BiLLM 28.80
1 DBF 13.57

Table: Batch size 1 decoding throughput on Nvidia RTX 4090 for two versions of Llama models.

Avg. bits 2-7B 3-8b

Original 16 68 tok/s 60 tok/s
DBF 2 153 tok/s (x2.25) 133 tok/s (x2.22)
DBF 1 170 tok/s (x2.50) 174 tok/s (x2.90)

More in: ”Addition is almost all you need: Compressing neural networks with double binary factorization.”
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Thank you for the attention


