How to compress neural networks

Vladimir BoZa

November 26, 2025

LLMs - what are we dealing with

Llama2-70B:

(embed_tokens) : Embedding(32000, 8192)
80 x LlamaDecoderLayer (

(self_attn): LlamaAttention(
(g-proj): Linear(8192, 8192)
(k-proj): Linear(8192, 1024)
(voproj): Linear(8192, 1024)
(o-proj): Linear(8192, 8192)

)

(mlp): LlamaMLP(

(gate_proj): Linear(8192, 28672)
(up-proj): Linear(8192, 28672)
(down_proj): Linear(28672, 8192)

)

)
(1lmhead): Linear(8192, 32000)%*

*Some nonparametric parts left out for clarity:
LlamaRotaryEmbedding (), SiLUActivation(), LlamaRMSNorm()

LLMs - what are we dealing with

Llama2-70B:

(embed_tokens) : Embedding(32000, 8192)

80 x LlamaDecoderLayer (

(self_attn): LlamaAttention(
(g-proj): Linear(8192,
(k_proj): Linear(8192,
(v_proj): Linear(8192, 1024)
(o-proj): Linear(8192, 8192)

)

(mlp): LlamaMLP(
(gate_proj): Linear(8192, 28672)
(up_proj): Linear(8192, 28672)
(down_proj): Linear(28672, 8192)

)

)

(Im head): Linear(8192, 32000)*

*Some nonparametric parts left out for clarity:
LlamaRotaryEmbedding (), SiLUActivation(), LlamaRMSNorm()

70b Floatl6 parameters
140GB of memory

99% of it is matrix multiplication

HW needs for inference:

* 2x 80-GB A100 GPUs
® 4x 40-GB A100 GPUs
* 2x 80-GB H100 GPUs

$50k to buy
$3k/month to rent

How to make LLMs smaller

0.2

41

1.6

4.8

0.1

1.77~

Sparsity

0 |-5.8| 0 |5.1

00|00

48| 0 |-5.2(-7.3

31213 0 |-5.4|36]|54
11210 |=|36[18([-36] 0
0 |-3]-4 54| 0 |-5.4|-7.2

Quantization

LLM inference

Done in parallel

be
|
[mP [wmP [wmP |
| Attention | [Attention | [Attention |
‘ . 5
M [wmP [MP
| Attention | [Attention | [Attention |

[Embedding | | Embedding | | Embedding |
| b

May the force

LLM inference

Done in parallel

Processed one by one

be
‘ [Decoder |i| Declder |
[MP | [MP] MCP M MtP |
\ Attention \ \ Attention \ \ Attention \ \ Atte:ﬂion \
‘ f f f
\ MEP | MEP | MtP M MEP |
\ Attention \ \ Attention \ \ Attention \ \ Attention \
| Embedding | [Embedding | [Embedding | {[Embedding |
| May the forTce bTe

Smaller means faster for

local LLMs

Done in parallel

Processed one by one

be you

| Decoder |i[Decoder | [Decoder]
| f |
oM [wmP [M i M][MR
\ Attention \ \ Attention \ \ Attention \ \ Attention \ \ Attention \
| f f f f |
¥] i i ¥
Lo mMP][MP [MP i MR [MR
\ Attention \ \ Attention \ \ Attention \ \ Attention \ \ Attention \

| Embedding | | Embedding | [Embedding |

May the

[Embedding | [Embedding | !
g T 5

be

For each predicted token,
we need to load all of the
weights

Smaller weights — faster
decoding

Layer-wise pruning

® Hard to tune the whole model at once
® QOptimize each layer separately
e Capture calibration input X for each layer

® Solve:
minw, || XW — XW,|[3

st |[[Wpllo<'S

Somebody tells me sparsity mask M

minw, || XW — XW,|[3

st. W0 (1-M)=0

W has shape n x m
m independent linear regressions
Gradient descent

Can we do better?

O 0 O

OO

: O(mn3) time.

: O(mn?) per iteration, but many iterations.

Somebody tells me sparsity mask M

minw, || XW — XW,|[3 O O

st. W0 (1-M)=0

OO

This is just a constrained optimization problem

Use Alternating Direction Method of Multipliers (ADMM) to solve it

" Distributed Optimization and Statistical Learning via the Alternating Direction Method of
Multipliers” by Boyd is a really good reading.

ADMM recap - augmented Lagrangian

minimize f(x)
subject to Ax =B

Lp(x,y) = f(x) +y T (Ax = b) + (p/2)||Ax — b|13

k+1

x*1 = argmin, L,(x,y")

yir =y 4 p(AXKTE — b)

ADMM recap - problem split

minimize f(x) + g(z)
subject to Ax + Bz = ¢

Lp(x,2,y) = f(x) + g(2) +y T (Ax + Bz — c) + (p/2)||Ax + Bz — cl[3

K = argmin, L,(x, 2", y")

(Xk+1

X

2K = argmin, L, .2,y

yk+1 — yk + p(AXk-i-l + sz+1 - C)

ADMM recap - substitution

minimize f(x) + g(z)
subject to Ax+ Bz = ¢

XK = argmin, f(x) + (p/2)[|Ax + Bz — ¢ + u|[3
2"t = argmin, g(2) + (p/2)||AX"** + Bz — ¢ + |3

uk+1 —_ Uk +AXk+1 + sz+1 —c

ADMM for constrained optimization

minimize f(x)

subject to x € C

ADMM for constrained optimization

minimize f(x)

subject to x € C
Let g(z) =0 if z € C otherwise g(z) = inf.

minimize f(x) + g(z)
subject to x = z

ADMM for constrained optimization

minimize f(x)

subject to x € C
Let g(z) =0 if z € C otherwise g(z) = inf.
minimize f(x) + g(z)

subject to x = z

XL = argmin, £(x) + (p/2)]Ix — 2+ u¥|[3
21 = argmin, g(2) + (p/2IIX* — 2+ |3

UL — gk kel ket

z-step is just a L2 projection of x + u upon C.

Back to masked regression

in [IXW — XW,|3
min | oll2

st. Wo0(1-M)=0

W = (XTX + pl) " H(XTXW + p(Z¥ — UX))
Zk+1 - M ® (W:+1 + Uk)
Uk+1 _ Uk + W:-l-l o Zk+l

Update rule discussion

Wit = (XTX + pl) Y (XTXW + p(Z* — U¥))
Zk-‘rl M ® (Wk+1 4 Uk)

k+1 __ k k+1 k+1
UKt = Uk + Wittt —

® Precompute (X7 X + p/)~! and XTXW.
e Update complexity same as gradient descent step O(mn?)
e W update is similar to Ridge regression. Here, we pull harder for terms we want to

get to zero.

How to find mask

® Prune elements with smallest W 4+ U
e Gradually increase sparsity from zero to target one over first p iterations (using cubic

schedule)
e Usually we prune during the first 15 iterations out of 20

How to find mask

® Prune elements with smallest W + U

e Gradually increase sparsity from zero to target one over first p iterations (using cubic
schedule)

e Usually we prune during the first 15 iterations out of 20

Wit = (XTX + pl) " H(XTXW + p(Z¥ — U¥))
MK+ — find largest(W"" + U¥)

ZkHL — pktl (W:+1 + U9

Ukl — gk + Wé‘“ _ zk+1

Results

Table: Perplexity of pruned LLaMA-2 variants on WikiText

Method Sparsity 7B 13 B 70B

Dense 0% 512 457 3.12
SparseGPT 50 % 6.51 5.63 3.98
ADMM-Grad 50 % 6.33 5.52 3.95
SparseGPT 60 % 058 7.80 4.98
ADMM-Grad 60 % 8.70 7.09 4.81
SparseGPT 2:4 10.17 832 540
ADMM-Grad 2:4 9.74 7.78 5.19

More in: " Fast and Effective Weight Update for Pruned Large Language Models.” TMLR 2024.

What if?

Factorize each weight matrix into two sparse matrices (Double sparse factorization).

in [|W — AB]|3 1
QQH |12 (1)
s.t. |[Allo+[|Bllo < S (2)

Generalizes low rank, monarch, ordinary sparsity (sort of).

Heuristic solution idea

® Run alternating minimization (fix A find B via ADMM, ...)
® In later iterations, reuse solution from previous steps as starting point

® Do now solve problem too hard during first steps

Alternating minimization

Initialize A, B(©)
U =0.-A U0 =0.8
for k=1..ndo
po = min(1.0, k/(n — 3))3
B, U,(Jk) < solve argmin ||[AB — W||g, st. ||Bllo < zp via m iterations of ADMM
with starting point BX~1, U[(,k_l) and starting pg
Alk), USR) « solve argmin ||AB — W||E, st. ||Allo < z, via m iterations of ADMM

(k=1)

with starting point AK=1, U} and starting pg

end for

Results (16 bits per non-zero, binary mask)

9 40%

—— DSF
ADMM

8_

135%

Perplexity on Wikitext-2
~

6.0 6.5 7.0 7.5 8.0 8.5
Model storage size [GiB]

More in: " Two Sparse Matrices are Better than One: Sparsifying Neural Networks with Double
Sparse Factorization.” ICLR 2025.

ying Neural Ne

. E E | Can t compete with quantization?

Factorizing each weight matrix
into two sparse matrices,
is much better than ordinary pruning. Ltow s ecompun?

Prunning of Llama2-7B

—— Ordinary pruning
—+— Double sparse

£
=
<
=
z
x
o
I
o
&

6.5 7.0 75 80 B85
Model storage size [GiB]

No flammable goods No durians
Fine $$5000

Quantization is still better than sparsity

Table: Perplexity of pruned LLaMA-2-7B

Method Size reduction Perplexity
Dense - 5.12
50% ADMM /2 6.33
50% Double sparse /2 6.12
8bit naive quantization /2 5.13
4bit naive quantization /4 5.71
4bit good quantization e 5.17
2bit good quantization /8 5.86

Silver lining: Very good quantization methods are impossible to finetune.

Combine Double sparsity with quantization?

Works, but still limited HW support.

Different extreme idea: Factorize into binary (41) matrices.

Almost binary neural networks

Turning a matrix into binary is quite drastic
Add scaling factors for each column and row
We want: W ~ Ay ® (abT)

Solution:

Ay = sign(W)

a, b are rank-1 decomposition of |W/|

We will call this SVID

Good news: Multiplication by +1 matrix can be
implemented using additions.

Xu, Yuzhuang, et al. " Onebit: Towards extremely low-bit large language models.” NeurlPS 2024

Double binary factorization (DBF)

o [T

W ~ DpB41DnA+1D,

Double binary factorization (DBF)

ﬁ' E Replace most of multiplications with
l W additions
Varying middle dimension determines
ﬁ © compression ratio
B+1

a
W ~ DpB11DmA+1D,

B-Dj

Can be finetuned if you are brave enough

Finding DBF

We want: W ~ (DpB11Dm,)(Dm,A+1D,) = BA
Fix B, find A, ... How to find A? ADMM!

Finding DBF

We want: W ~ (DpB11Dm,)(Dm,A+1D,) = BA
Fix B, find A, ... How to find A? ADMM!

- B 2
min || W — BAI3
st. A= szAjlea

Finding DBF

We want: W ~ (DpB11Dm,)(Dm,A+1D,) = BA
Fix B, find A, ... How to find A? ADMM!

- B 2
min || W — BAI3
st. A= szAjlea

XK+l _ (BTB+p/)71(BTw+p(Ak _ Uk))
A:l = sign(X<1)
Dumy, Ds = rank-1(|X*1|)
AL — D ALLD,
UK+l = gk 4 xk+1 _ pktl

DBF results

Table: Results for Llama2-7B.

Table: Results for Llama3-8B.

Avg. bits Method Wikitext ppl.
16 Dense 5.12

2 QTIP 5.86

2 DBF 6.09

1 OneBit 9.73

1 DBF 8.76

Avg. bits Method Wikitext ppl.
16 Dense 5.54

2 QTIP 7.33

2 DBF 7.30

1.1 BiLLM 28.80

1 DBF 13.57

DBF results

Table: Results for Llama2-7B. Table: Results for Llama3-8B.
Avg. bits Method Wikitext ppl. Avg. bits Method Wikitext ppl.
16 Dense 5.12 16 Dense 5.54
2 QTIP 5.86 2 QTIP 7.33
2 DBF 6.09 2 DBF 7.30
1 OneBit 9.73 1.1 BiLLM 28.80
1 DBF 8.76 1 DBF 13.57

Table: Batch size 1 decoding throughput on Nvidia RTX 4090 for two versions of Llama models.

Avg. bits 2-7B 3-8b
Original 16 68 tok/s 60 tok/s
DBF 2 153 tok/s (x2.25) 133 tok/s (x2.22)
DBF 1 170 tok/s (x2.50) 174 tok/s (x2.90)

More in: " Addition is almost all you need: Compressing neural networks with double binary factorization.”

Addition iS almost all you need:
Compressing neural networks with
Double Binary Factorization

Abstract

Double Binary Factorization Finding DBF

INTERNET ARCHIVE
CANADA

Thank you for the attention

