
How to compress neural networks

Vladiḿır Boža

November 26, 2025

LLMs - what are we dealing with

Llama2-70B:

(embed tokens): Embedding(32000, 8192)

80 x LlamaDecoderLayer(

(self attn): LlamaAttention(

(q proj): Linear(8192, 8192)

(k proj): Linear(8192, 1024)

(v proj): Linear(8192, 1024)

(o proj): Linear(8192, 8192)

)

(mlp): LlamaMLP(

(gate proj): Linear(8192, 28672)

(up proj): Linear(8192, 28672)

(down proj): Linear(28672, 8192)

)

)

(lm head): Linear(8192, 32000)*

*Some nonparametric parts left out for clarity:
LlamaRotaryEmbedding(), SiLUActivation(), LlamaRMSNorm()

• 70b Float16 parameters

• 140GB of memory

• 99% of it is matrix multiplication

• HW needs for inference:
• 2x 80-GB A100 GPUs
• 4x 40-GB A100 GPUs
• 2x 80-GB H100 GPUs

$50k to buy

$3k/month to rent

LLMs - what are we dealing with

Llama2-70B:

(embed tokens): Embedding(32000, 8192)

80 x LlamaDecoderLayer(

(self attn): LlamaAttention(

(q proj): Linear(8192, 8192)

(k proj): Linear(8192, 1024)

(v proj): Linear(8192, 1024)

(o proj): Linear(8192, 8192)

)

(mlp): LlamaMLP(

(gate proj): Linear(8192, 28672)

(up proj): Linear(8192, 28672)

(down proj): Linear(28672, 8192)

)

)

(lm head): Linear(8192, 32000)*

*Some nonparametric parts left out for clarity:
LlamaRotaryEmbedding(), SiLUActivation(), LlamaRMSNorm()

• 70b Float16 parameters

• 140GB of memory

• 99% of it is matrix multiplication

• HW needs for inference:
• 2x 80-GB A100 GPUs
• 4x 40-GB A100 GPUs
• 2x 80-GB H100 GPUs

$50k to buy

$3k/month to rent

How to make LLMs smaller

0.2 -5.8 4.1 5.1

4.1 1.6 -4.0 -0.2

4.8 0.1 -5.2 -7.3

0 -5.8 0 5.1

0 0 0 0

4.8 0 -5.2 -7.3

0 -3 2 3

2 1 -2 0

3 0 -3 -4

1.77 *

Text

0 -5.4 3.6 5.4

3.6 1.8 -3.6 0

5.4 0 -5.4 -7.2

=

Quantization

Sparsity

LLM inference

Embedding

Attention

MLP

Attention

MLP

...

May the force

Decoder

be

Embedding

Attention

MLP

Attention

MLP

...

Embedding

Attention

MLP

Attention

MLP

...

Done in parallel

LLM inference

Embedding

Attention

MLP

Attention

MLP

...

May the force

Decoder

be

Embedding

Attention

MLP

Attention

MLP

...

Embedding

Attention

MLP

Attention

MLP

...

be

Decoder

with

Embedding

Attention

MLP

Attention

MLP

...

Done in parallel Processed one by one

Smaller means faster for local LLMs

Embedding

Attention

MLP

Attention

MLP

...

May the force

Decoder

be

Embedding

Attention

MLP

Attention

MLP

...

Embedding

Attention

MLP

Attention

MLP

...

be

Decoder

with

Embedding

Attention

MLP

Attention

MLP

...

with

Decoder

you

Embedding

Attention

MLP

Attention

MLP

...

Done in parallel Processed one by one

For each predicted token,
we need to load all of the
weights

Smaller weights → faster
decoding

Layer-wise pruning

• Hard to tune the whole model at once

• Optimize each layer separately

• Capture calibration input X for each layer

• Solve:

minWp ||XW − XWp||22

s.t. ||Wp||0 ≤ S

Somebody tells me sparsity mask M

minWp ||XW − XWp||22

s.t. Wp ⊙ (1−M) = 0

W has shape n ×m

m independent linear regressions ((XTX)−1XT y): O(mn3) time.

Gradient descent (XT (XW − XWp)⊙M): O(mn2) per iteration, but many iterations.

Can we do better?

Somebody tells me sparsity mask M

minWp ||XW − XWp||22

s.t. Wp ⊙ (1−M) = 0

This is just a constrained optimization problem

Use Alternating Direction Method of Multipliers (ADMM) to solve it

”Distributed Optimization and Statistical Learning via the Alternating Direction Method of

Multipliers” by Boyd is a really good reading.

ADMM recap - augmented Lagrangian

minimize f (x)

subject to Ax = B

Lρ(x , y) = f (x) + yT (Ax − b) + (ρ/2)||Ax − b||22

xk+1 = argminx Lρ(x , y
k)

yk+1 = yk + ρ(Axk+1 − b)

ADMM recap - problem split

minimize f (x) + g(z)

subject to Ax + Bz = c

Lρ(x , z , y) = f (x) + g(z) + yT (Ax + Bz − c) + (ρ/2)||Ax + Bz − c||22

xk+1 = argminx Lρ(x , z
k , yk)

zk+1 = argminz Lρ(x
k+1, z , yk)

yk+1 = yk + ρ(Axk+1 + Bzk+1 − c)

ADMM recap - substitution

minimize f (x) + g(z)

subject to Ax + Bz = c

u =
1

ρ
y

xk+1 = argminx f (x) + (ρ/2)||Ax + Bzk − c + uk ||22
zk+1 = argminz g(z) + (ρ/2)||Axk+1 + Bz − c + uk ||22
uk+1 = uk + Axk+1 + Bzk+1 − c

ADMM for constrained optimization

minimize f (x)

subject to x ∈ C

Let g(z) = 0 if z ∈ C otherwise g(z) = inf.

minimize f (x) + g(z)

subject to x = z

xk+1 = argminx f (x) + (ρ/2)||x − zk + uk ||22
zk+1 = argminz g(z) + (ρ/2)||xk+1 − z + uk ||22
uk+1 = uk + xk+1 − zk+1

z-step is just a L2 projection of x + u upon C .

ADMM for constrained optimization

minimize f (x)

subject to x ∈ C

Let g(z) = 0 if z ∈ C otherwise g(z) = inf.

minimize f (x) + g(z)

subject to x = z

xk+1 = argminx f (x) + (ρ/2)||x − zk + uk ||22
zk+1 = argminz g(z) + (ρ/2)||xk+1 − z + uk ||22
uk+1 = uk + xk+1 − zk+1

z-step is just a L2 projection of x + u upon C .

ADMM for constrained optimization

minimize f (x)

subject to x ∈ C

Let g(z) = 0 if z ∈ C otherwise g(z) = inf.

minimize f (x) + g(z)

subject to x = z

xk+1 = argminx f (x) + (ρ/2)||x − zk + uk ||22
zk+1 = argminz g(z) + (ρ/2)||xk+1 − z + uk ||22
uk+1 = uk + xk+1 − zk+1

z-step is just a L2 projection of x + u upon C .

Back to masked regression

min
Wp

||XW − XWp||22

s.t. Wp ⊙ (1−M) = 0

W k+1
p = (XTX + ρI)−1(XTXW + ρ(Z k − Uk))

Z k+1 = M ⊙ (W k+1
p + Uk)

Uk+1 = Uk +W k+1
p − Z k+1

Update rule discussion

W k+1
p = (XTX + ρI)−1(XTXW + ρ(Z k − Uk))

Z k+1 = M ⊙ (W k+1
p + Uk)

Uk+1 = Uk +W k+1
p − Z k+1

• Precompute (XTX + ρI)−1 and XTXW .

• Update complexity same as gradient descent step O(mn2)

• W update is similar to Ridge regression. Here, we pull harder for terms we want to
get to zero.

How to find mask

• Prune elements with smallest W + U

• Gradually increase sparsity from zero to target one over first p iterations (using cubic
schedule)

• Usually we prune during the first 15 iterations out of 20

W k+1
p = (XTX + ρI)−1(XTXW + ρ(Z k − Uk))

Mk+1 = find largest(Wk+1
p + Uk)

Z k+1 = Mk+1 ⊙ (W k+1
p + Uk)

Uk+1 = Uk +W k+1
p − Z k+1

How to find mask

• Prune elements with smallest W + U

• Gradually increase sparsity from zero to target one over first p iterations (using cubic
schedule)

• Usually we prune during the first 15 iterations out of 20

W k+1
p = (XTX + ρI)−1(XTXW + ρ(Z k − Uk))

Mk+1 = find largest(Wk+1
p + Uk)

Z k+1 = Mk+1 ⊙ (W k+1
p + Uk)

Uk+1 = Uk +W k+1
p − Z k+1

Results

Table: Perplexity of pruned LLaMA-2 variants on WikiText

Method Sparsity 7B 13 B 70B

Dense 0 % 5.12 4.57 3.12

SparseGPT 50 % 6.51 5.63 3.98
ADMM-Grad 50 % 6.33 5.52 3.95
SparseGPT 60 % 9.58 7.80 4.98
ADMM-Grad 60 % 8.70 7.09 4.81
SparseGPT 2:4 10.17 8.32 5.40
ADMM-Grad 2:4 9.74 7.78 5.19

More in: ”Fast and Effective Weight Update for Pruned Large Language Models.” TMLR 2024.

What if?

Factorize each weight matrix into two sparse matrices (Double sparse factorization).

min
A,B
||W − AB||22 (1)

s.t. ||A||0 + ||B||0 ≤ S (2)

Generalizes low rank, monarch, ordinary sparsity (sort of).

Heuristic solution idea

• Run alternating minimization (fix A find B via ADMM, ...)

• In later iterations, reuse solution from previous steps as starting point

• Do now solve problem too hard during first steps

Alternating minimization

Initialize A(0),B(0)

U
(0)
a = 0 · A,U(0)

b = 0 · B
for k = 1..n do
ρ0 = min(1.0, k/(n − 3))3

B(k),U
(k)
b ← solve argmin ||AB −W ||F , st. ||B||0 ≤ zb via m iterations of ADMM

with starting point Bk−1,U
(k−1)
b and starting ρ0

A(k),U
(k)
a ← solve argmin ||AB −W ||F , st. ||A||0 ≤ za via m iterations of ADMM

with starting point Ak−1,U
(k−1)
a and starting ρ0

end for

Results (16 bits per non-zero, binary mask)

6.0 6.5 7.0 7.5 8.0 8.5
Model storage size [GiB]

6

7

8

9

Pe
rp

le
xi

ty
 o

n
W

ik
ite

xt
-2

35%

40%
45% 50% 55%

40%

45%

50%
55%

60%

DSF
ADMM

More in: ”Two Sparse Matrices are Better than One: Sparsifying Neural Networks with Double

Sparse Factorization.” ICLR 2025.

Quantization is still better than sparsity

Table: Perplexity of pruned LLaMA-2-7B

Method Size reduction Perplexity
Dense - 5.12

50% ADMM /2 6.33
50% Double sparse /2 6.12

8bit naive quantization /2 5.13

4bit naive quantization /4 5.71
4bit good quantization /4 5.17
2bit good quantization /8 5.86

Silver lining: Very good quantization methods are impossible to finetune.

Combine Double sparsity with quantization?

Works, but still limited HW support.

Different extreme idea: Factorize into binary (±1) matrices.

Almost binary neural networks

Turning a matrix into binary is quite drastic

Add scaling factors for each column and row

We want: W ≈ A±1 ⊙ (abT)

Solution:
A±1 = sign(W)
a, b are rank-1 decomposition of |W |

We will call this SVID

Good news: Multiplication by ±1 matrix can be
implemented using additions.

⊙ . ⊙

X

 .

X
W

b a
A±1

Xu, Yuzhuang, et al. ”Onebit: Towards extremely low-bit large language models.” NeurIPS 2024

Double binary factorization (DBF)

⊙ . ⊙ . ⊙

X

 .

X
W

b m
aB±1 A±1

W ≈ DbB±1DmA±1Da

Replace most of multiplications with
additions

Varying middle dimension determines
compression ratio

Can be finetuned if you are brave enough

Double binary factorization (DBF)

⊙ . ⊙ . ⊙

X

 .

X
W

b m
aB±1 A±1

W ≈ DbB±1DmA±1Da

Replace most of multiplications with
additions

Varying middle dimension determines
compression ratio

Can be finetuned if you are brave enough

Finding DBF

We want: W ≈ (DbB±1Dm1)(Dm2A±1Da) = BA

Fix B, find A, ... How to find A? ADMM!

min
A
||W − BA||22

s.t. A = Dm2A±1Da

X k+1 = (BTB + ρI)−1(BTW + ρ(Ak − Uk))

A±1 = sign(X k+1)

Dm2 ,Da = rank-1(|X k+1|)
Ak+1 = Dm2A±1Da

Uk+1 = Uk + X k+1 − Ak+1

Finding DBF

We want: W ≈ (DbB±1Dm1)(Dm2A±1Da) = BA

Fix B, find A, ... How to find A? ADMM!

min
A
||W − BA||22

s.t. A = Dm2A±1Da

X k+1 = (BTB + ρI)−1(BTW + ρ(Ak − Uk))

A±1 = sign(X k+1)

Dm2 ,Da = rank-1(|X k+1|)
Ak+1 = Dm2A±1Da

Uk+1 = Uk + X k+1 − Ak+1

Finding DBF

We want: W ≈ (DbB±1Dm1)(Dm2A±1Da) = BA

Fix B, find A, ... How to find A? ADMM!

min
A
||W − BA||22

s.t. A = Dm2A±1Da

X k+1 = (BTB + ρI)−1(BTW + ρ(Ak − Uk))

A±1 = sign(X k+1)

Dm2 ,Da = rank-1(|X k+1|)
Ak+1 = Dm2A±1Da

Uk+1 = Uk + X k+1 − Ak+1

DBF results

Table: Results for Llama2-7B.

Avg. bits Method Wikitext ppl.

16 Dense 5.12

2 QTIP 5.86
2 DBF 6.09

1 OneBit 9.73
1 DBF 8.76

Table: Results for Llama3-8B.

Avg. bits Method Wikitext ppl.

16 Dense 5.54

2 QTIP 7.33
2 DBF 7.30

1.1 BiLLM 28.80
1 DBF 13.57

Table: Batch size 1 decoding throughput on Nvidia RTX 4090 for two versions of Llama models.

Avg. bits 2-7B 3-8b

Original 16 68 tok/s 60 tok/s
DBF 2 153 tok/s (x2.25) 133 tok/s (x2.22)
DBF 1 170 tok/s (x2.50) 174 tok/s (x2.90)

More in: ”Addition is almost all you need: Compressing neural networks with double binary factorization.”

DBF results

Table: Results for Llama2-7B.

Avg. bits Method Wikitext ppl.

16 Dense 5.12

2 QTIP 5.86
2 DBF 6.09

1 OneBit 9.73
1 DBF 8.76

Table: Results for Llama3-8B.

Avg. bits Method Wikitext ppl.

16 Dense 5.54

2 QTIP 7.33
2 DBF 7.30

1.1 BiLLM 28.80
1 DBF 13.57

Table: Batch size 1 decoding throughput on Nvidia RTX 4090 for two versions of Llama models.

Avg. bits 2-7B 3-8b

Original 16 68 tok/s 60 tok/s
DBF 2 153 tok/s (x2.25) 133 tok/s (x2.22)
DBF 1 170 tok/s (x2.50) 174 tok/s (x2.90)

More in: ”Addition is almost all you need: Compressing neural networks with double binary factorization.”

Thank you for the attention

