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Abstract
We study a fluctuation test where cell colonies grow
from a single cell to a specified population size before
undergoing treatment. During growth, cells may acquire
resistance to treatment and pass it to their offspring with
a small probability. Unlike the classical Luria–Delbrück
test, which assumes irreversible resistance, our model
allows resistant cells to revert to a drug-sensitive state.
This modification, motivated by recent research on drug
resistance in cancer and microbial cells, does not alter
the central part of the Luria–Delbrück distribution, where
the Landau probability density function approximation
remains applicable. However, the right tail of the
distribution deviates from the power law of the Landau
distribution, with the correction factor given by the
Landau cumulative distribution function. Using singular
perturbation theory and asymptotic matching, we derive
uniformly valid approximations and describe tail corrections
for populations with different initial cell states. Our
approach generalizes the framework of [2] by incorporating
reversible transitions.

Model formulation
We model population growth with a two-type branching
process where each cell has an independent, exponentially
distributed cell cycle, with the same mean for both cell
types. Cells divide at the end of the cycle; the state of the
daughter cell is chosen probabilistically depending on the
mother cell:
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Figure 1. Four possible division outcomes of sensitive (white ball) and
resistant (black ball) cells with corresponding probabilities.

Probability PN(m) of observingm resistant cells as the total
population reaches N satisfies the master equation:

PN+1(m) =
1

N

{
PN(m − 1)

[
µ(N − (m − 1)) + (1− λ)(m − 1)

]
+ PN(m)

[
(1− µ)(N −m) + λm

]}
.

In this poster, we assume a single sensitive cell as the initial
condition (N0 = 1, m0 = 0). Other cases discussed in [1].

Methods
Weexamine the asymptotic behavior ofPN(m) asµ, λ → 0.
The table below summarizes approximations of PN(m)
across different regimes and their validity:

m = O(1) m = O(N) = N −m N −m = O(1)
N = O(1) regular (1)
N = O

(
1
µ

)
left (4) regular coarse-grained (2) right (5)

Regular solution:
When the population size is of order N = O(1) and µ, λ→
0, a regular power series expansion in the perturbation
parameter µ is derived. The leading-order term yields

PN(m) ∼
µN

m(m + 1)
, (1)

matching the result derived for the unidirectional case [2].

Regular coarse-grained solution:
The regular coarse-grained solution given as

PN(m) ∼
µN

m2
(2)

holds between the boundary layers and can be combined
with them into a uniform composite approximation.

Reversible resistance introduces a boundary-layer at the right tail of the distribution
that is described by the Landau cumulative distribution function.
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(a) Left-boundary Landau PDF approximation used:
PN(m) ∼ 1

µN fLandau

(
m
µN − lnµN

)
,

as derived for the unidirectional model in [2].
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(b) Right-boundary Landau CDF approximation used:
PN(m) ∼ µ

NFLandau
(
N−m
λN − lnλN

)
.

10
2

10
3

10
4

10
5

10
6

10
−8

10
−6

10
−4

10
−2

m

P
N
(m

)

 

 

numerical results

approximation

(c) Composite Landau PDF/CDF approximation used:
PN(m) ∼ 1

µN fLandau

(
m
µN − lnµN

)
FLandau

(
N−m
λN − lnλN

)
.

Figure 2. Probability PN(m) of havingm resistant cells in a population of N = 2× 105 cells as calculated numerically (blue dashed lines) and its asymptotic approximations (red solid lines).
The population starts from a single sensitive cell (N0 = 1, m0 = 0). Perturbation parameters: µ = λ = 10−3.

Left boundary-layer solution:
Here we focus on the distinguished large-population,
low-mutation regime with µN = O(1). A left
boundary-layer arises for m = O(1). We derive the
boundary-layer solution using the generating function
GN(x) =

∑N
m=0 PN(m)x

m, which converts the master
equation into the difference–differential form
N(GN+1(x)−GN(x)) = (x−1)(µN+(1−µ−λ)x∂x)GN(x). (3)
An intermediate-asymptotics Ansatz GN(x) ∼ N−βH(x, y)
leads to a PDE whose solution yields a parametric family.
Matching to regular regimes determines constants and the
scaling exponent β, yielding
PN(m) ∼ fL−C(m;µN), (4)

where fL−C is the Lea-Coulson probability mass function
(PMF).

Right boundary-layer solution:
By symmetry (m0 ↔ N0−m0, λ ↔ µ), the result (4) extends
to the right boundary-layer, with N−m = O(1) and λN =
O(1), yielding
PN(m) ∼

µ

N
FL−C(N −m − 1;λN), (5)

where FL−C is the Lea-Coulson cummulative distribution
function (CDF).

Log-composite solution:
The log-composite solution is constructed as

PN(m) ∼
left× regular coarse-grained× right

left overlap× right overlap , (6)

where the ’left overlap’ and ’right overlap’ terms are
obtained via the asymptotic matching principle, yielding
PN(m) ∼ fL−C(m;µN)FL−C(N −m − 1;λN). (7)

Landau distribution:
As the shape parameter µN increases, the Lea–Coulson
PMF is well approximated by the Landau probability
density function fLandau [2] and its CDF by the Landau
cumulative distribution FLandau. These approximations are
illustrated in Figure 2: panel (a) shows the left-boundary
PDF approximation [2], panel (b) the right-boundary
CDF approximation, and panel (c) the full composite
approximation combining both.
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