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BACKGROUND

Gene expression is inherently stochastic, result-
ing in cell-to-cell variability in protein levels, even
among genetically identical cells. Such variability
plays a crucial role in such processes as cell differ-
entiation, stress response, and antibiotic tolerance.

In this work, we model a single cell in which:

e Proteins are synthesized in instantaneous, dis-
crete events - bursts - each producing a random
number of proteins.

e Protein levels are decreased by dilution due to
active cell growth.

e Positive feedback on dilution: an increase in pro-
tein levels imposes a burden on the cell, reducing
its growth rate and thereby slowing down dilu-
tion.
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Fliegure 1. Schematic of the studied model.

MODEL

We model protein dynamics in a single cell as a
continuous-time discrete-value Markov process n(t)
— protein count per unit volume at time .

Ri: n-2sn+b b~ Geom(f) (protein burst)

Ry : nMn—ﬁ_

Rs : cell MQCGIS

(protein dilution)

(cell division)

e Bursts occur with frequency )\, following a
Poisson process. The burst size b follows a geo-
metric distribution, with the mean £.

e The cell growth rate depends on protein level:

8
r(n) = 1+ kn

where k Is the feedback strength, ~ Is the max-
imal growth rate. Higher protein levels lower
the growth rate, modelling the burden effect.

e Dilution is modelled as loss event, occurring at
arate f(n) =n-r(n).
e |n the population model, each cell divides in-

dependently at rate r(n).
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Sleure 2. Sample trajectories of single-cell and population
Drocesses.

SINGLE-CELL PERSPECTIVE

The probability P,(t) that the protein level is n at
time ¢t satisfies the following master equation:
— AP, (1),

=9 Z Po—i(t)b; + An(Pu(t) f(n))
- 1)

where A,(+) Is the forward difference operator.

Let P, denote the probability that the protein level
IS n In the stationary state. Then P, can be ex-
pressed as a weighted average of two negative bi-
nomial mass functions:

Py=0fnp(n—1,p+1,q\/vp)
-+ (1 — 5)fNB (na P, q)\//yp) y

where fyp(n,r, p)isthe mass function of the negative
binomial distribution and § = Agk/(~v(1 — q)).

POPULATION-LEVEL PERSPECTIVE

The number of cells in population H,(t) with the
protein level n at time t is governed by the following
population balance equation:

dH, ik
= 2; biH,_i(t) + A, (H,(t)f(n)) o
+r(n)H,(t) — NH,(1).

Similarly to the single-cell model, the stationary dis-
tribution H,, can be expressed as the sum of nega-
five binomial mass functions:

H, = (1 — g)fNB (TL, 1, 6’) (3)
—I_ffNB(n_ 1777_|— 179)7
where fyp(n,r,p)isthe mass function of the negative
binomial distribution and & = Agk/(~v(1 + k — q)).

The details on derivation of P, and H,,, as well as
parameters p, n, 6 are given in [1].

SINGLE CELL -4 POPULATION

As the feedback strength k increases:

e Single-cell level: dilution becomes less effec-
five and a single cell accumulates more protein.

e Population level: fast-dividing cells with low

protein proliferate faster, so the mean protein
level decreases.
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Fleure 3. The effect of increasing the positive feedback
strength.

TIME-DEPENDENT SOLUTIONS

In general, the master equations (1) and (2) can also
be represented in matrix form as:

dP(t) dH (t)

dt AP(D) dt

where P(t) is probability vector describing the pro-
tein level in the single-cell model and H(t) is vec-
tor describing the number of cells with given pro-
tein level in the population model. The matrices A,
and A, correspond to the single-cell and population
models, respectively, and have the following general
form:

= A, H (1), (4)

)\bi_]‘, ch < 1,

—\g — f(@) +xr(@), ifj=1i,

fli+1), it =141,

0, itg >1+1,
where y is the indicator parameter: y = 0 in A, and

x = 1in A, The solutions of (4) can be expressed
as:

P(t) = eP(0), H(t) = e“H(0). (6)

The main challenge in the numerical solution is that
‘he vectors P(t) and H(t), as well as the matrices
As and A, are infinite-dimensional. Thus, to obtain
the time-dependent solutions in Fig. 4, we truncate
the dimension at a finite level N
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Flgure 4. Time evolution of protein distributions at single-cell
and population-level perspectives.

RESULTS

e \We obtained explicit solutions for the steady-
state probability mass function.

e [he results are consistent with the continuous
model.

e |Infinite dimensions are truncated once the tail
mass is negligible (N = 600).

e [ime-dependent numerical solutions rapidly
converge to the explicit steady states.
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