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BACKGROUND

Gene expression is inherently stochastic, result-

ing in cell-to-cell variability in protein levels, even

among genetically identical cells. Such variability

plays a crucial role in such processes as cell differ-

entiation, stress response, and antibiotic tolerance.

In this work, we model a single cell in which:

• Proteins are synthesized in instantaneous, dis-

crete events – bursts – each producing a random

number of proteins.

• Protein levels are decreased by dilution due to

active cell growth.

• Positive feedback on dilution: an increase in pro-

tein levels imposes a burden on the cell, reducing

its growth rate and thereby slowing down dilu-

tion.
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Figure 1. Schematic of the studied model.

MODEL

We model protein dynamics in a single cell as a

continuous-time discrete-value Markov process n(t)
– protein count per unit volume at time t.

R1 : n
λ−→ n + b, b ∼ Geom(β) (protein burst)

R2 : n
f (n)−−→ n − 1 (protein dilution)

R3 : cell r(n)−−→ 2 cells (cell division)

• Bursts occur with frequency λ, following a

Poisson process. The burst size b follows a geo-

metric distribution, with the mean β.

• The cell growth rate depends on protein level:

r(n) = γ

1 + kn
where k is the feedback strength, γ is the max-

imal growth rate. Higher protein levels lower

the growth rate, modelling the burden effect.

• Dilution is modelled as loss event, occurring at

a rate f (n) = n · r(n).
• In the population model, each cell divides in-

dependently at rate r(n).

Figure 2. Sample trajectories of single-cell and population

processes.

SINGLE-CELL PERSPECTIVE

The probability Pn(t) that the protein level is n at

time t satisfies the following master equation:

dPn(t)
dt

= λ
n∑

i=0
Pn−i(t)bi + ∆n(Pn(t)f (n)) − λPn(t),

(1)

where ∆n(·) is the forward difference operator.

Let Pn denote the probability that the protein level

is n in the stationary state. Then Pn can be ex-

pressed as a weighted average of two negative bi-

nomial mass functions:

Pn = δfNB (n − 1, ρ + 1, qλ/γρ)
+ (1 − δ)fNB (n, ρ, qλ/γρ) ,

where fNB(n, r, ρ) is themass function of the negative

binomial distribution and δ = λqk/(γ(1 − q)).

POPULATION-LEVEL PERSPECTIVE

The number of cells in population Hn(t) with the

protein level n at time t is governed by the following

population balance equation:

dHn

dt
= λ

n∑
i=0

biHn−i(t) + ∆n (Hn(t)f (n))

+ r(n)Hn(t) − λHn(t).
(2)

Similarly to the single-cell model, the stationary dis-

tribution Hn can be expressed as the sum of nega-

tive binomial mass functions:

Hn = (1 − ξ)fNB (n, η, θ)
+ ξfNB (n − 1, η + 1, θ) ,

(3)

where fNB(n, r, p) is the mass function of the negative

binomial distribution and ξ = λqk/(γ(1 + k − q)).
The details on derivation of Pn and Hn, as well as

parameters ρ, η, θ are given in [1].

SINGLE CELL 6= POPULATION

As the feedback strength k increases:

• Single-cell level: dilution becomes less effec-

tive and a single cell accumulates more protein.

• Population level: fast-dividing cells with low

protein proliferate faster, so the mean protein

level decreases.

Figure 3. The effect of increasing the positive feedback

strength.

TIME-DEPENDENT SOLUTIONS

In general, the master equations (1) and (2) can also

be represented in matrix form as:

dP (t)
dt

= AsP (t), dH(t)
dt

= ApH(t), (4)

where P (t) is probability vector describing the pro-

tein level in the single-cell model and H(t) is vec-

tor describing the number of cells with given pro-

tein level in the population model. The matrices As

and Ap correspond to the single-cell and population

models, respectively, and have the following general

form:

Aij =


λbi−j, if j < i,

−λq − f (i) + χr(i), if j = i,

f (i + 1), if j = i + 1,

0, if j > i + 1,

(5)

where χ is the indicator parameter: χ = 0 in As and

χ = 1 in Ap. The solutions of (4) can be expressed

as:

P (t) = etAsP (0), H(t) = etApH(0). (6)

Themain challenge in the numerical solution is that

The vectors P (t) and H(t), as well as the matrices

As and Ap, are infinite-dimensional. Thus, to obtain

the time-dependent solutions in Fig. 4, we truncate

the dimension at a finite level N .
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Figure 4. Time evolution of protein distributions at single-cell

and population-level perspectives.

RESULTS

• We obtained explicit solutions for the steady-

state probability mass function.

• The results are consistent with the continuous

model.

• Infinite dimensions are truncated once the tail

mass is negligible (N = 600).
• Time-dependent numerical solutions rapidly

converge to the explicit steady states.
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