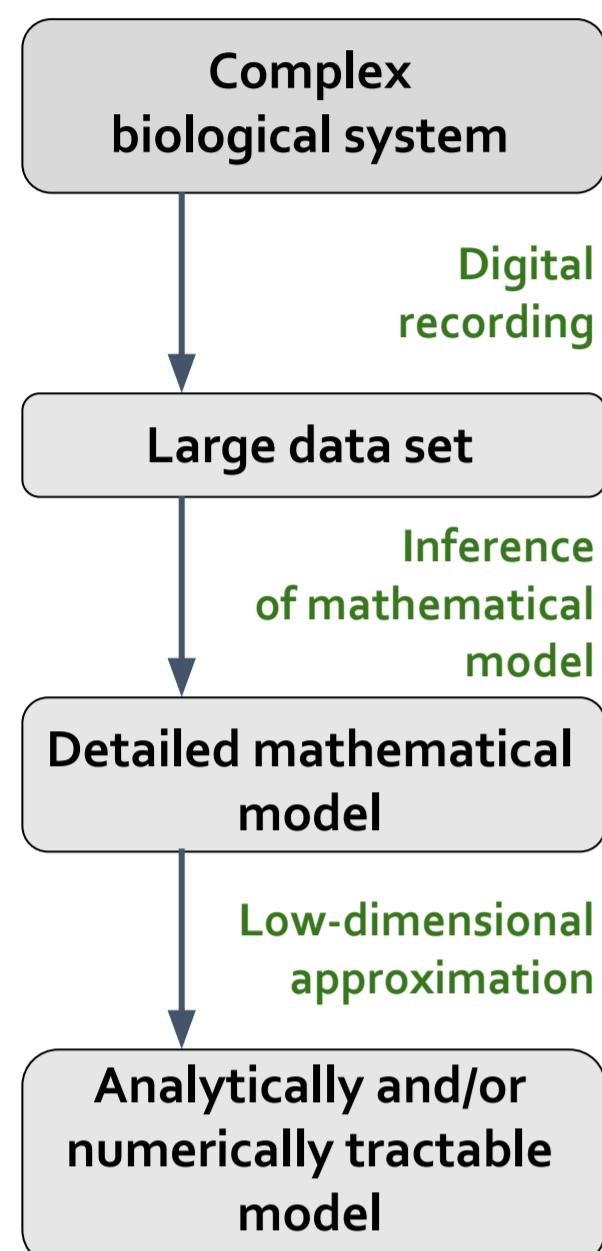


A Rigorous Approach to Stochastic Dynamics Inference from Tracked Data



Inference of the dynamical processes from the tracked data

Motivation

[Stochastic nonlinear dynamics of confined cell migration in two-state systems, D Brückner, et al. Nature Phys. 2019]

Formulation of the problem

$dx = vdt$
 $dv = F(x, v)dt + \sigma(x, v)d\xi(t)$

Infer $F(x, v)$ and $\sigma(x, v)$ from n points sampled at intervals Δt

Simple analogy – numerical quadrature

Approximate $\int_a^b f(x) dx$ from discrete data:
Error in $M_n \leq \frac{M(b-a)^3}{24n^2}$

Midpoint Rule: $f(x) = e^{0.1x^2}$
Trapezoidal Rule: $f(x) = e^{0.1x^2}$
Simpson's Rule: $f(x) = e^{0.1x^2}$

Error in $T_n \leq \frac{M(b-a)^5}{120n^4}$

www.storyofmathematics.com

- same data
- all linear combinations
- different precision

ULI method (Underdamped Langevin Inference)

Project force & noise functions to a finite basis: $b = \{b_\alpha(x, v)\}$, $1 \leq \alpha \leq n_b$

Orthonormalization of basis functions:

$$c_\alpha(x, v) = \sum_{\beta=1}^{n_b} B_{\alpha\beta}^{-1/2} b_\beta(x, v), \text{ where } B_{\alpha\beta} = \langle b_\alpha(x, v) b_\beta(x, v) \rangle = \int b_\alpha(x, v) b_\beta(x, v) P(x, v) dx dv$$

Coefficients of the basis functions (low-dimensional projections):

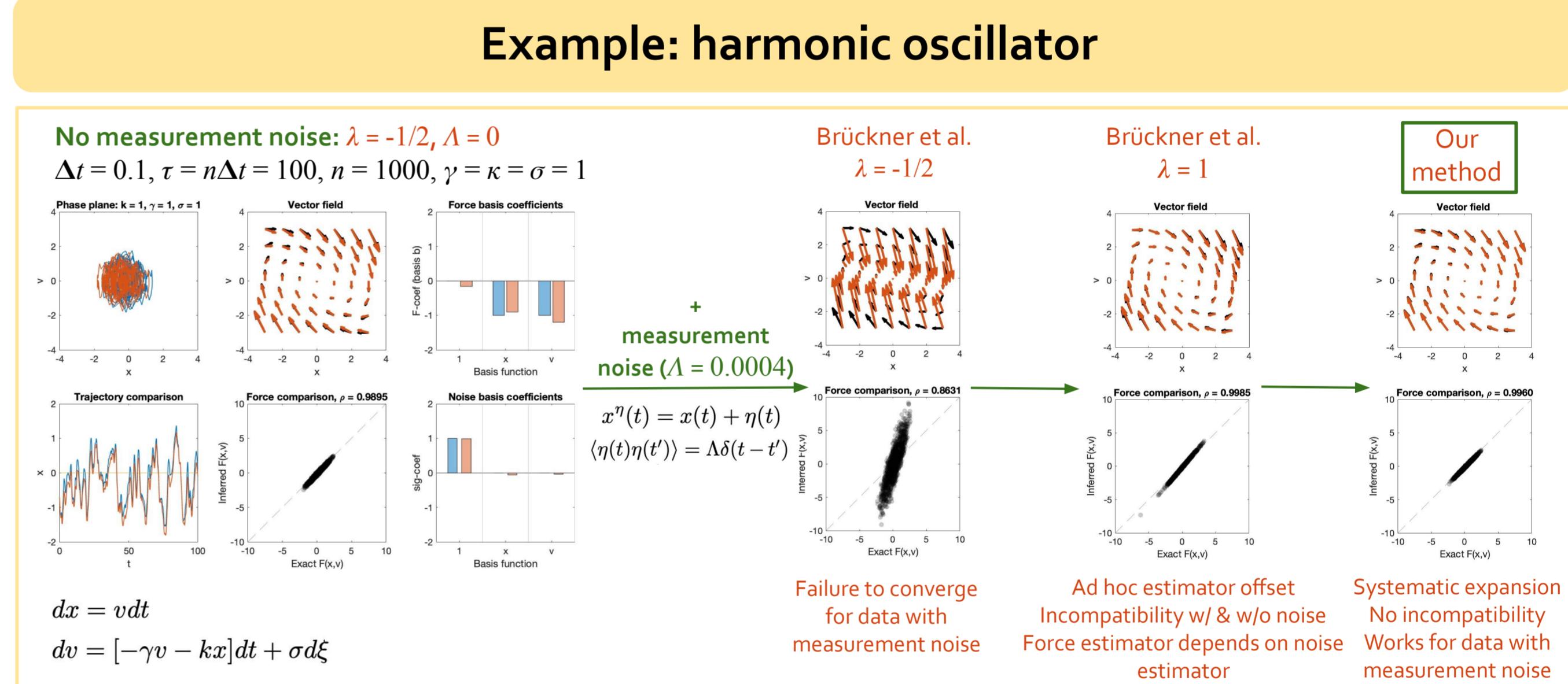
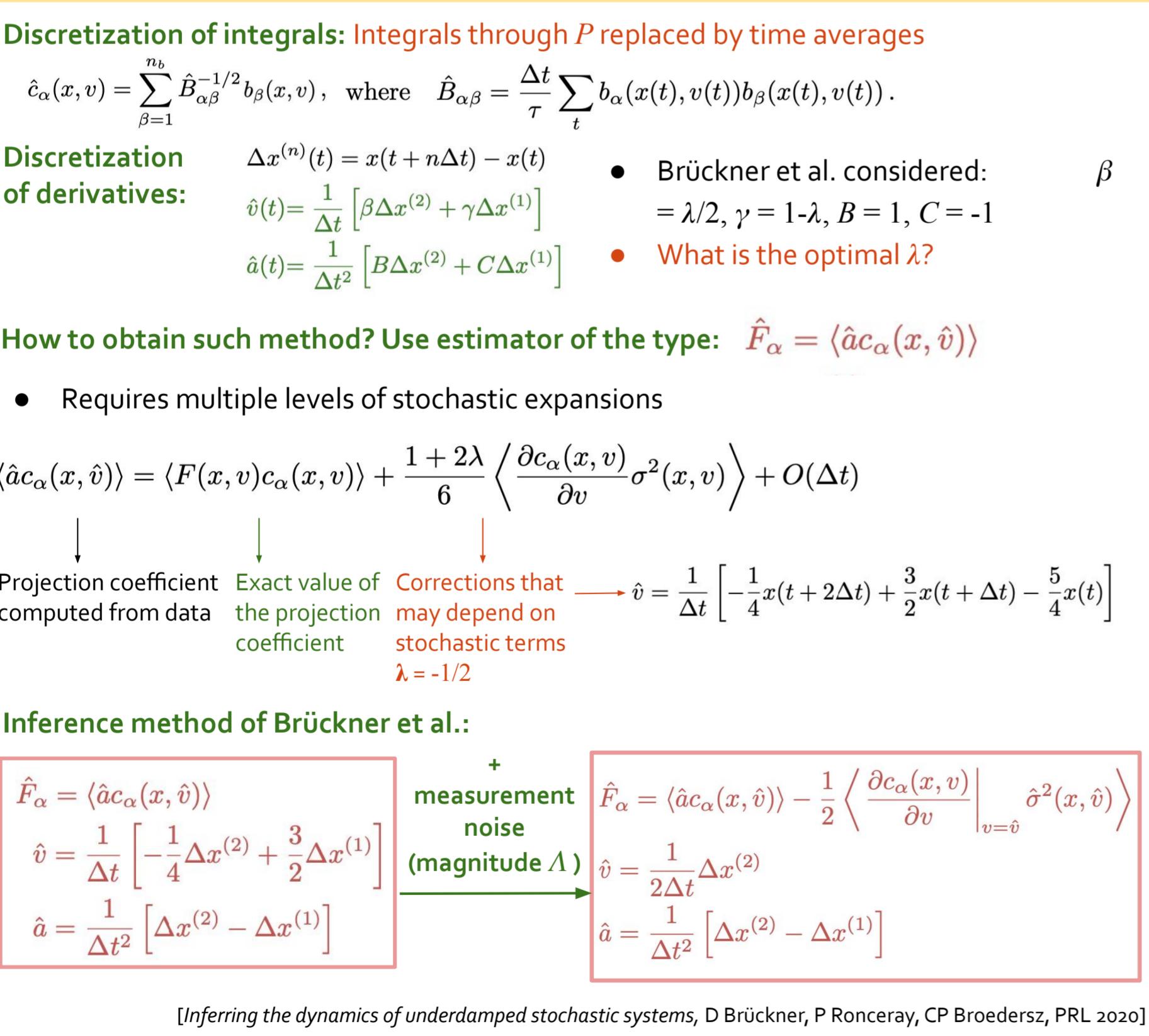
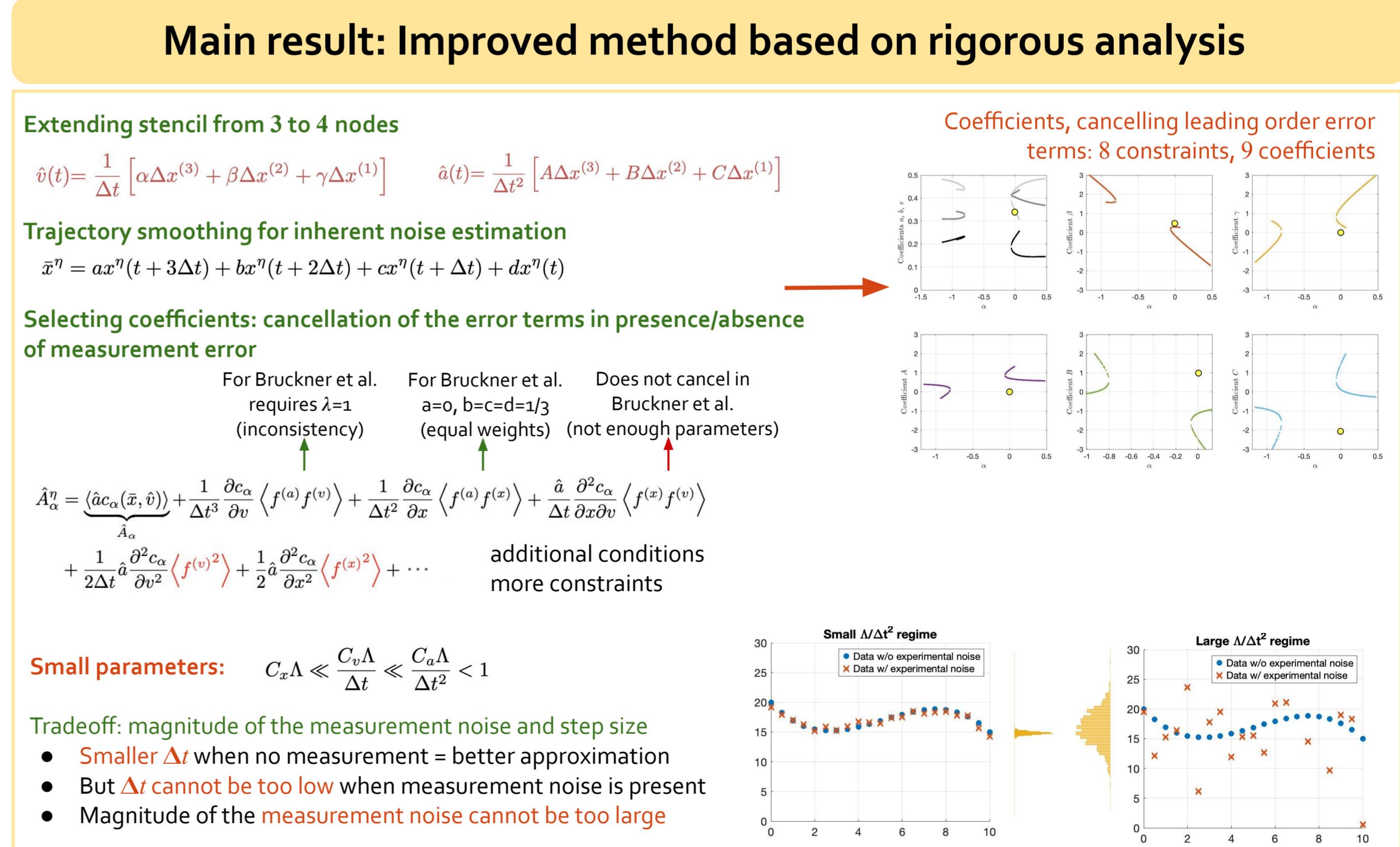
$$F(x, v) \approx \sum_{\alpha=1}^{n_b} F_\alpha c_\alpha(x, v), \quad \sigma^2(x, v) \approx \sum_{\alpha=1}^{n_b} \sigma_\alpha^2 c_\alpha(x, v),$$

$$F_\alpha = \langle F(x, v) c_\alpha(x, v) \rangle = \int F(x, v) c_\alpha(x, v) P(x, v) dx dv,$$

$$\sigma_\alpha^2 = \langle \sigma^2(x, v) c_\alpha(x, v) \rangle = \int \sigma^2(x, v) c_\alpha(x, v) P(x, v) dx dv.$$

Challenges:

- x – observed, v – unobserved, **loss of Markovian property**, $P(x, v)$ – unobserved
- Typically a single trajectory of a limited length - **small data**, **sparse sampling times**
- **Additional noise** from measurement error distorting data



FAKULTA MATEMATIKY,
FYZIKY A INFORMATIKY
Univerzita Komenského
v Bratislave

MATFYZ
CONNECTIONS

This work was funded by the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09I03-03-V04-00037

Katarína Bodová, Richard Kollár
Comenius University Bratislava, Slovakia

Acknowledgements:

D. Brückner¹, G. Tkačik²

¹ University of Basel, Basel, Switzerland, ² ISTA, Austria