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Transport equations

A “profile” F : R — R (modeling some physical quantity) that
moves at a constant speed v to the right is represented by

f(x,t) .= F(x — vt)

This function of time t € R and space variable x € R satisfies
the partial differential equation (PDE)

of of :
a(x, )+ va—x(x, t)=0 (orjust f; 4 viy = 0)

because the partial derivatives are —vF'(x — vt) and F'(x — vt).
In two (and more) space dimensions (i.e. x € R?), this becomes

fi+v-Vi=0

with v € R? and gradient Vf := (f,, fy,), SOV - Vf = vify, + Vaofy,.

The same PDE holds when the transporting velocity v(x, t)
depends on (x, t) € R? x R, and even when f is vector-valued.



Euler equations for ideal fluids

A particularly important case of this is when f = v, that is,
Vi+Vv-Vv=0

(with Vv a 2 x 2 matrix). Here v(x, t) is velocity of the fluid
molecules at space-time location (x, t), which are transported
by the same velocity (Burgers equation).

Problem: in this model, fluid molecules do not interact.

In fact, liquids are incompressible and molecules push against
each other, causing (instantaneous) build-up of pressure, which
then acts as an additional force (adding to acceleration v;):

Vi+V-Vv=-Vp

One new unknown p(x, t) € R requires adding one equation.
Physically, this encodes incompressibility of the fluid:

V.-v=20

with V- v = (vq)x, + (v2)x, the divergence of v. This can be
used to determine p, and the two PDE are the Euler equations.



Euler equations for ideal fluids

Pressure complicates things, but can be removed by applying
VE - (f,f) = (—0x, 0x) - (f1, f2) = —(F)x, + (2)x,
to the first PDE. From V- Vp = —(px, )x, + (Px,)x, = 0 we get
wt+V-Vw=0

with vorticity w := V+ - v = —(vy)x, + (v2)x, representing the
amount and direction of fluid rotation (this also uses V - v = 0).
This is the vorticity form of Euler — a single transport PDE!

But now we need to express v from w (a little complicated):
1 [ (y=x)°"
LA~ /
Vit = VAT ) = o | S (Y D dy
because V= - V+ = Oy, x, + Ox,x, = A. This makes the PDE an
active scalar equation (v depends on the transported quantity).

Main questions: do solutions exist for all time (yes) and how
fast can their derivatives grow (double-exponentially in time)?



Incompressible Porous Media equation (IPM)

Another important active scalar PDE is IPM. The unknown
quantity is now the (variable) density p of an incompressible
fluid inside a porous medium (e.g. a limestone aquifer):

pt+V-Vp=0
Now gravity is (0, —p) (let g = 1) and v is given by Darcy’s law
v:=-Vp—(0,p) (not v;) and V-v=0
Here V* . v = —p,.,s0 Vv = —-V+A~Tp, (thisis more singular).
A particularly important case is the Muskat problem, where
t
0=

This models the dynamic of two fluids with densities pg < p1
(e.g. oil and water, or fresh and salt water), where Q! is the
region of the lighter fluid and 9Q! is the fluid interface.

PDE dynamic then transports 0Q! with the above velocity v
(px, being a Dirac delta measure on 9Q¢; note that |x|” = 24p).



Well-posedness/ill-posedness/overturning on R?

Originally formulated by (petroleum engineer) Muskat in 1937,
studied extensively in the last 20 years (mainly on R?).

Rayleigh-Taylor stable regime when lighter fluid is everywhere
above the denser one; otherwise unstable regime.

Many results proving local well-posedness in stable regime for
sufficiently smooth interfaces (and global well-posedness for
interfaces close to flat), incl. Siegel, Caflisch, Howison (2004);
Cérdoba, Gancedo (2007); Constantin, Gancedo, Shvydkoy,
Vicol (2017); Cameron (2019); Alazard, Nguyen (2023);. ..

lll-posedness in unstable regime: Cérdoba, Gancedo (2007).

Moreover, initial stable regime interfaces can overturn in finite
time and the problem becomes ill-posed (a form of singularity):
Castro, Cérdoba, Fefferman, Gancedo, Lépez-Fernandez (2012).

Stable regime interface singularity development still open on R2.



PDE for the stable regime Muskat interface on R?

In stable regime on R?, Muskat can be transformed into a PDE
(or rather an integro-differential equation) for a function f whose
graph is the interface (v only matters on it):

_ P1—Po y (X, t) — K(x =y, 1)]

fllx, t) = —- Jr V2 +1f(x. 1) — f(x =y, D)2 dy

This comes from v = —V+-A~"p,,, which shows that v has the
same degree of regularity as p (discontinuous on the interface,
but only tangential component, so normal velocity well-defined).

This also makes p; + v - Vp = 0 supercritical (p is only bounded,
SO Vv needs to be 1 derivative smoother to be Lipschitz).

Supercriticality generally suggests finite time singularities, but
gravity also works to smooth the dynamic in the stable regime.



Muskat in the stable regime on the half-plane R x R

Aquifers (e.g. sand or sandstone) lie above or in-between
impermeable rocky layers. If the fluid interface gets close to the
bottom (or top) layer, need Muskat on R x R™ (or on horizontal
strips if the two layers are close). This is
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Particularly relevant when one fluid invades a region occupied
exclusively by the other (water flows underneath oil along the
bottom layer, saltwater flows underneath freshwater, etc.). Then
the interface even touches/lies on the boundary.

Can stable regime singularities occur on the boundary?
Existing R? theory required initial data to vanish at 4-cc or be
periodic or small. How about more general interfaces?

Cordoba, Granero-Belinchon, Orive (2014): Muskat on a strip,
interface away from boundaries (can be done on R x R™).



Local well-posedness and blow-up criterion on R x R*

We can even allow O(|x|'~) growth of  as |x| — oo (optimal).
But for simplicity we will only consider bounded interfaces, with
uniformly bounded H2-norms of f,(-, t) on unit intervals. Define

3
1911z2(r) = sup 19l 2(jx—1.x+1)) 1911k ry = Z ”g(k)HB(R)
XER k=0

Theorem (Z. 2024 +)
If4) > 0 has ||| ) < oo, there is Ty, > 0 such that:

(i) There is a unique classical solution f > 0 to (1) on
R x [0, T;) with f(-,0) = ¢ such that forany T € [0, Ty),

sup_[|£(:, )|y < 0
te[0,T]
(ii) If Ty, < oo, then for each v € (0,1],

T’u“;
/0 (fo(--/t)H‘Zoo(R) + fox('7t)‘|g/(k)) dt = oo




Finite time singularity for Muskat on R x R

Here
19(x) —9(y)l

X =y
Extends to Muskat on R? and on horizontal strips.
Theorem (Z. 2024+)

If miny = 0, ¢ — 1o € H3(R) for some constant ¢, € (0, ),
and ||¢'|| oo (r) < % then T,, < oo and f above satisfies

”gHC’Y(]R) = )S(ii})/

3 T \
Illio®xio, ey < 55 = /0 o D, ) Gt = 00

for each v € (0, 1].

This is the “denser fluid invading from both sides” scenario.

Different dynamic from ideas to obtain singularity for IPM with
initial data close to unstable regime for Muskat (e.g. Kiselev,
Yao (2023); with forcing: Cérdoba, Martinez-Zoroa (2024+)).



Maximum principles for Muskat

The last theorem is proved via these maximum principles, with

p1 — po (a+ b)*(a—b)? >0
2r  2[c2+ (a+b)?][c2 + (a—b)?] ~

Aa, b, c) =

Theorem (Z. 2024 +)
(i) If miny =0, then min f(-,t) = 0 foreach t € [0, Ty).
(ii) If p — boo € H3(R), then for each t € [0, T,,) we have

d
G0 = ey < = [ A0 0, Fx =, ),) oy

(7)) 1| (-5 ) | oo ) < 3 for some t' € [0, T,), then
[£(-, )| o= (=) s decreasing on [t', Ty).




