

Matrix Models and Fuzzy Spaces

Motivation, Models and Methods

Motivation

Quantum space

In noncommutative geometry, the coordinates of space are replaced by **noncommuting matrices** \hat{x}_i

$$[\hat{x}_i, \hat{x}_j] \neq 0.$$

This limits how precisely we can probe space and introduces a natural **minimal length scale**. This is expected to be a description of the space at Planck scale, $l_P \approx 10^{-35}$ m.

Ideas from quantum gravity and black-hole physics suggest that spacetime at extremely short distances may have **intrinsic structure**. NC geometry offers a simple and consistent way to model such behaviour, giving us an intuitive framework to explore possible deviations from classical space.

Why use matrices to describe space?

Matrices provide a **finite-dimensional** (and computer-friendly) representation of space. Instead of infinitely many points, everything is encoded in a manageable set of numbers that are easy to **generate, store and manipulate**. Unlike lattice discretisations, matrix geometries preserve key **symmetries** (for example, full rotational invariance on the fuzzy sphere), avoiding many grid-related artifacts. For mathematicians, physicists and data scientists, the appeal is that geometry reduces to familiar **linear algebra**: matrices, eigenvalues and stable numerical routines. This makes matrix spaces ideal for both analytical work and large-scale numerical experiments.

Why matrix geometry matters?

Matrix geometry acts as a **model of quantum spacetime**. Because everything is finite, it allows us to avoid the usual divergences of quantum field theory while keeping the essential physics intact.

This let us:

- study consequences of a **minimal length**,
- explore **fluctuating geometry** as a quantum object,
- test ideas in a clean and **symmetries-preserving** framework,
- run efficient numerical simulations using standard **linear-algebra tools**.

This brings together **physics, mathematics, and computational science** in a single framework for exploring quantum space, and offers a practical route toward understanding how noncommutative geometry behaves at the smallest scales.

Models

The fuzzy sphere

A quantum space can be built from **matrices**, where fields become finite matrices with limited spatial resolution. The standard example is the fuzzy sphere, defined by noncommuting coordinates

$$[\hat{x}_i, \hat{x}_j] = i\theta \varepsilon_{ijk} \hat{x}_k.$$

The model forms a dictionary between fields on a sphere with limited spatial resolution and finite matrices.

$$M \leftrightarrow \text{fuzzy sphere}$$

The fuzzy onion

The fuzzy onion extends the fuzzy sphere to **three dimensions** by stacking several fuzzy spheres into concentric layers. Each layer is a matrix block, and neighboring layers are linked by operators acting like **radial derivatives**. This yields a finite 3D-space where both **quantum** systems (e.g. the hydrogen atom, field theory) and **classical** problems (such as heat transfer or wave propagation) can be studied with controlled resolution and preserved symmetry.

Other matrix models

Matrix geometries can also arise from simple **matrix actions**, from models that can be defined by a simple or multi-trace potential. A common example is the quartic action

$$S = \text{Tr} \left(\frac{1}{2} r M^2 + g M^4 \right),$$

the matrix analogue of ϕ^4 field theory.

These models display several **geometric phases** and provide a compact setting for studying symmetry breaking, effective geometry and other novel traits of this approach that are not seen in the commutative limit.

Dirac ensembles

Dirac ensembles describe geometry through the **spectrum of the Dirac operator**. Instead of specifying coordinates, one samples random Dirac operators and studies the resulting **fluctuating geometries**.

This spectral viewpoint allows us to probe curvature-like effects, geometric phases and the structure of quantum space using standard linear-algebra tools.

Methods

Analytical methods

For many matrix models the **eigenvalue distribution** can be computed analytically utilizing large- N techniques. A common tool is the **saddle-point approximation**, which turns the many-dimensional integral into a simpler equation for the density of matrix eigenvalues $\rho(\lambda)$. This approach gives exact or nearly exact results when the model is close to a solvable limit and provides a benchmark for numerical methods. It is especially useful because it reveals the qualitative structure of the distribution without requiring complex computations.

Bootstrap method

A different approach is the **bootstrap** technique, where one does not solve for the full distribution directly, but computes a number of its **moments**. These have to obey positivity and consistency conditions, which restrict the allowed shape of the eigenvalue probability distribution $\rho(\lambda)$. One then scans the space of initial moments, **recurrently** computes some number of higher moments and check if they lead to a consistent solution or not. This method provides accurate estimates with a limited amount of computational resources.

Hamiltonian Monte Carlo

The **Hamiltonian Monte Carlo** algorithm can be easily implemented to study matrix models. From these samples we compute the empirical eigenvalue density and compare it with analytical and bootstrap predictions.

The methods works for a wide range of models and provides a reliable, nonperturbative **numerical** reference. It is particularly valuable when the analytical saddle point breaks down or multiple phases coexist.

Outline

Using these methods, the most straightforward line of research is the study of (quantum) field theories in a quantum space, probing how effects of quantum space could resolve some known issues or lead to possible **observational effects**.

One can also use this approach to study ordinary physical models (taking advantage of the matrix formulation) or problems outside of physics, for example studying the underlying structure of **large datasets** using quantum geometries.

This work was supported by VEGA 1/0025/23 and Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava by Vedecká pomocná síla scheme.

