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Motivation

- Ontology provides a formal framework for representing malware concepts and relationships in both
machine- and human-readable forms, enabling improved detection and explainability (Švec et al.,
2024).
- Integrating dynamic malware attributes into ontology enhances discrimination and interpretability by
capturing a wider range of behaviors and expressing them through clear, standardized vocabularies
(Amita Dessai, 2021; Owoh et al., 2024).
- Combining ontology-driven relational data with Graph Neural Networks (GNNs) produces malware
detection systems that are not only accurate but also transparent and robust, offering deeper seman-
tic understanding and improved explainability (Bilot et al., 2023; Shokouhinejad et al., 2025)

Problem statement/Gap

- Existing ontology-based malware models (e.g., Anthony et al., 2023; Mojžiš et al., 2023) make
progress in interpretability but fail to exploit the relational structure inherent in malware data.
- The PEMalware Ontology (Švec et al., 2024) focuses solely on static features, which are vulnerable
to obfuscation and evasion, limiting detection robustness.
- Graph Neural Networks (GNNs) offer strong performance for malware detection but remain black-
box models, lacking the transparency needed for analyst trust and forensic insight.
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Figur 1: Project workflow
Figure 1 presents the entire Project workflow, including Definiton of classes, Ontology design,

Malware Analysis, Ontology-based datset construction and application of XAI model.

MAECO Core Classes and Relationships

Figure 2: MAECO Class Relationships To ensure interoperability with broader cyber threat
intelligence standards, MAECO establishes explicit semantic links between MAEC objects and STIX

Cyber-Observable Objects (SCOs).

Proof of Concept: GCN and RGCN

To demonstrate the suitability of GNN on Ontology-based dataset, we constructed a Pytoch Geo-
metric data (PyG) suitable for GNN from the knowledge graphs constructed by Trizna et al. (2024)
derived from the existing PE Malware ontology constructed by ˇSvec et al. (2022) from the EMBER
dataset (based on static features) with 1000 label(2) samples. In the first phase (Table 1) of the
experiments, we used only the numeric feature subsect of the dataset to test the effectivelness of
edge reversal. while in the second phase (Table 2) we used the whole feature set to train the RGCN
model and node-level and graph-level explaination with captum explainer (Table 3)

Result 1

Table1: Performance comparison of GCN and RGCN models with and without edge reversal
GCN1: GCN without edge reversal, GCN2: GCN with edge reversal, RCGN1: RGCN without edge reversal, RGCN2: RGCN with edge reversal.

Model Precision Recall F1-score Accuracy TPR
GCN1 64 79 71 67 55
GCN2 78 46 58 67 87
RGCN1 72 55 65 67 74
RGCN2 99 97 98 98 98

Result 2: RGCN2 with Captum explainer

Table2: Performance of RGCN2 on full feature set
Model Precision Recall F1-score Accuracy TPR
RGCN2 82 85 84 82 85

.
Table 3: Fidelity and Relative Drop Metrics

Metric Value
Mean fidelity− 0.1016
Mean fidelity+ 0.8698
Mean relative drop 0.1302

Node - levle and graph Level Explaination

Figure 3: Node Level (Local) Explaination for Node 318

Figure 4: Graph Level Explaination (Global)

Discussion and Conclusion

The experimental results demonstrate that the Relational Graph Convolutional Network (RGCN),
particularly when enhanced with edge reversal, effectively captures complex relational and
semantic dependencies within ontology-based malware data. Using Captum’s Integrated
Gradients (IG), both node- and graph-level explanations were generated to interpret the
model’s predictions. The node-level attributions revealed that distinctive file-level features
such as has_file_feature_multiple_executable_sections, has_action_release-mutex, and
has_file_feature_path_strings strongly indicate malicious behavior, whereas attributes like im-

ports_count and mz_count occasionally acted as counter-signals.
- At the global level, the explanations confirm that RGCN2 relies primarily on ontology-derived se-
mantic relations rather than raw numeric attributes, reinforcing the advantage of integrating relational
reasoning into malware detection models. Overall, these findings demonstrate that ontology-based
relational learning not only enhances classification accuracy but also enables transparent, human-
interpretable insights, establishing a solid foundation for the neuro-symbolic extensions to be ex-
plored in the future.
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