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Introduction

Modern avatar reconstruction increasingly relies on synthetic data

to address the limitations of real-world capture. Synthetic human

datasets offer full control over body shape, pose, and appearance, en-

abling large volumes of accurate, diverse, and richly annotated sam-

ples that are difficult, time-consuming, or costly to obtain through tra-

ditional scanning.

Measurement-DrivenAvatars

We reconstruct metrically accurate 3D avatars from only frontal and

lateral silhouettes [2]. Anthropometric measurements are estimated

from the silhouettes andmapped to SMPL [6] shape parameters using

regression trained on a large synthetic human dataset. This enables

reliable body-shape reconstruction without 3D scans.

Figure 1. Anthropometrically correct avatars.

The pipeline follows a simple sequence: silhouettes are processed by

a ResNet-based [3] model to extract key anthropometric cues, which

are then translated into a parametric body model through a learned

measurement-to-shape mapping. This structured flow ensures that

each stage contributes directly to preserving realistic proportions and

generating a coherent, metrically faithful avatar.

Figure 2. Avatar generation pipeline.

By relying on synthetic training data, the system learns stable mea-

surement relationships that generalize well to real silhouettes with

varying quality.

Avatar Refinement

Synthetic humans in T-pose are generated together with clean

segmentation masks, and their visual realism is enhanced using

ControlNet-guided Stable Diffusion [1].

(a) original (b) enhanced

Figure 3. Synthetic data enhanced by stable diffusion.

The enhanced outputs introduce richer textures, more natural shad-

ing, and subtle visual details that are difficult to achieve with purely

procedural rendering. This refinement step helps reduce the syn-

thetic–to–real domain gap.

Neural Enhancement

In addition, the corresponding 3D models can be further refined us-

ing neural representations such as NeRF [7] or Gaussian Splatting [4].

These methods capture subtle surface detail and realistic lighting ef-

fects that traditional mesh-based techniques often miss. By combin-

ing neural fields with classical geometry, the resulting models achieve

higher visual fidelity and more natural appearance.

Figure 4. Gaussian Splatting optimization [4].

Gaussian-BasedAvatar Model

FLAME [5] parameters are first extracted from the input video using

VHAP [8], providingan initial coarseheadmodel. This geometry is then

refined with GaussianAvatars [9], where Gaussian Splatting recovers

detailed appearance and realistic surface structure. The final represen-

tation captures high-fidelity textures and geometry beyond what tra-

ditional meshes can achieve.

Figure 5. From FLAME estimate toGaussian avatar.

The entire reconstruction in the Figure 5 was generated from a single

monocular video, demonstrating that high-fidelity head avatars can be

obtained without multi-view capture or specialized hardware.

Conclusion

Synthetic data provides a powerful foundation for both human-

centered and industrial 3D vision tasks. By combining procedurally

generated datasets with modern neural techniques such as diffusion

models, NeRFs, and Gaussian Splatting, it is possible to achieve high

levels of visual fidelity andmetric accuracyeven fromminimalor imper-

fect inputs. Our results demonstrate that silhouettes, T-pose renders,

and monocular videos can be transformed into detailed 3D avatars

through hybrid pipelines that merge classical geometry with neural

representations. These approaches significantly reduce the need for

costly data capture while narrowing the synthetic-to-real gap, en-

abling scalable and reliable 3Dvision solutions. As synthetic generation

and neural rendering continue to evolve, their integration will further

broaden the applicability of 3Dmodels.
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