

Double Nonlinear Diffusion Equations in a Two-Component Domain

Mathematical model

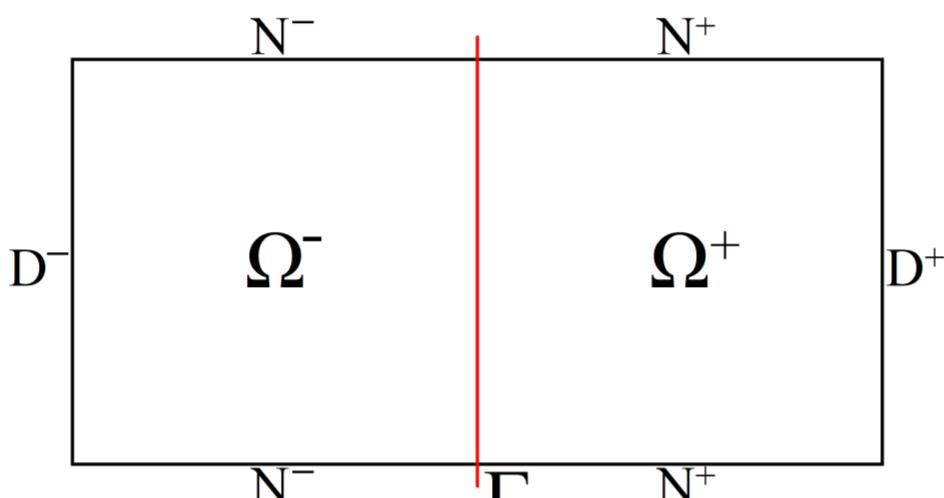
Let $0 < m < p$ and $0 < \sigma < r$ be given. Our aim is to study the following problem. Consider the equations

$$\begin{aligned} \partial_t u^m - \nabla \cdot (|\nabla u|^{p-1} \nabla u) &= 0 & \text{in } Q^- \\ \partial_t v^\sigma - \nabla \cdot (|\nabla v|^{r-1} \nabla v) &= 0 & \text{in } Q^+ \end{aligned} \quad \left. \begin{array}{l} \\ \end{array} \right\}, \quad (1)$$

where

$$\begin{aligned} Q^- &= \Omega^- \times (0, T), \quad \Omega^- = (-\ell, 0) \times (-\hbar, \hbar), \\ Q^+ &= \Omega^+ \times (0, T), \quad \Omega^+ = (0, \ell) \times (-\hbar, \hbar), \end{aligned}$$

for positive ℓ, \hbar, T .



The nonnegative functions $u = u(x, t)$ and $v = v(x, t)$, with $x = (x_1, x_2)$ are assumed to satisfy the following contact conditions at $x_1 = 0$:

$$\begin{aligned} (|\nabla u|^{p-1} \nabla u - |\nabla v|^{r-1} \nabla v) \cdot (1, 0) &= 0 \\ v &= M u^\omega \end{aligned} \quad \left. \begin{array}{l} \\ \end{array} \right\} \quad \text{on } S = \Gamma \times (0, T) \quad (2)$$

for given $0 < M, \omega < \infty$, where $\Gamma = \{0\} \times (-\hbar, \hbar)$. On the remaining parts of $(\partial\Omega^- \setminus \Gamma)$ and $(\partial\Omega^+ \setminus \Gamma)$ we consider the homogenous Dirichlet and Neumann boundary conditions of the form:

$$\begin{aligned} u &= 0 & \text{on } D^- \times (0, T), \quad D^- = \{-\ell\} \times (-\hbar, \hbar), \\ v &= 0 & \text{on } D^+ \times (0, T), \quad D^+ = \{\ell\} \times (-\hbar, \hbar) \end{aligned} \quad \left. \begin{array}{l} \\ \end{array} \right\} \quad (3)$$

and

$$\begin{aligned} |\nabla u|^{p-1} \nabla u \cdot \nu &= 0 & \text{on } N^- \times (0, T), \quad N^- = \partial\Omega^- \setminus (\Gamma \cup D^-), \\ |\nabla v|^{r-1} \nabla v \cdot \nu &= 0 & \text{on } N^+ \times (0, T), \quad N^+ = \partial\Omega^+ \setminus (\Gamma \cup D^+), \end{aligned} \quad \left. \begin{array}{l} \\ \end{array} \right\} \quad (4)$$

where ν is the outward pointing unit normal vector at any point of N^- and N^+ except the corners. For definiteness, we study our problem subject to the appropriate initial conditions

$$\begin{aligned} u(\cdot, 0) &= u_0 & \text{on } \Omega^- \\ v(\cdot, 0) &= v_0 & \text{on } \Omega^+ \end{aligned} \quad \left. \begin{array}{l} \\ \end{array} \right\} \quad (5)$$

for given bounded nonnegative functions u_0 and v_0 .

Since this problem has not yet been fully treated, we study its approximation here, in which we replace condition (2) on S by the nonlinear boundary conditions

$$|\nabla u|^{p-1} \nabla u \cdot (1, 0) + L(M u^\omega - v) = 0, \quad -|\nabla v|^{r-1} \nabla v \cdot (1, 0) + L(v - M u^\omega) = 0 \quad (6)$$

for positive L . This condition preserves (2)₁, however, we are able to satisfy (2)₂, in a weak sense, by sending $L \rightarrow \infty$, only in the case when $p = r = 1$. We shall refer to (6) as L -approximation of (2). Problem (1)-(6) is analyzed in [1].

Transformation and L -approximation

Note that plugging

$$U = |u|^m \operatorname{sign} u \quad \text{and} \quad V = |v|^\sigma \operatorname{sign} v$$

into (1), we see that U, V must satisfy

$$\begin{aligned} \partial_t U - \nabla \cdot (\vartheta^-(U, \nabla U) \nabla U) &= 0 & \text{in } Q^-, \\ \partial_t V - \nabla \cdot (\vartheta^+(V, \nabla V) \nabla V) &= 0 & \text{in } Q^+, \end{aligned} \quad \left. \begin{array}{l} \\ \end{array} \right\}$$

where

$$\vartheta^-(U, \nabla U) = m^{-p} |U|^{\frac{(1-m)p}{m}} |\nabla U|^{p-1} \quad \text{and} \quad \vartheta^+(V, \nabla V) = \sigma^{-r} |V|^{\frac{(1-\sigma)r}{\sigma}} |\nabla V|^{r-1}$$

and the L -approximation of (2) on Γ is

$$\vartheta^-(U, \nabla U) \partial_{x_1} U + L(M^\sigma U^{\frac{\omega\sigma}{m}} - V) = 0, \quad -\vartheta^+(V, \nabla V) \partial_{x_1} V + L(V - M^\sigma U^{\frac{\omega\sigma}{m}}) = 0.$$

FAKULTA MATEMATIKY,
FYZIKY A INFORMATIKY
Univerzita Komenského
v Bratislave

MATFYZ
CONNECTIONS

Jela Babušíková, Ján Filo, Patrik Mihala
Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava

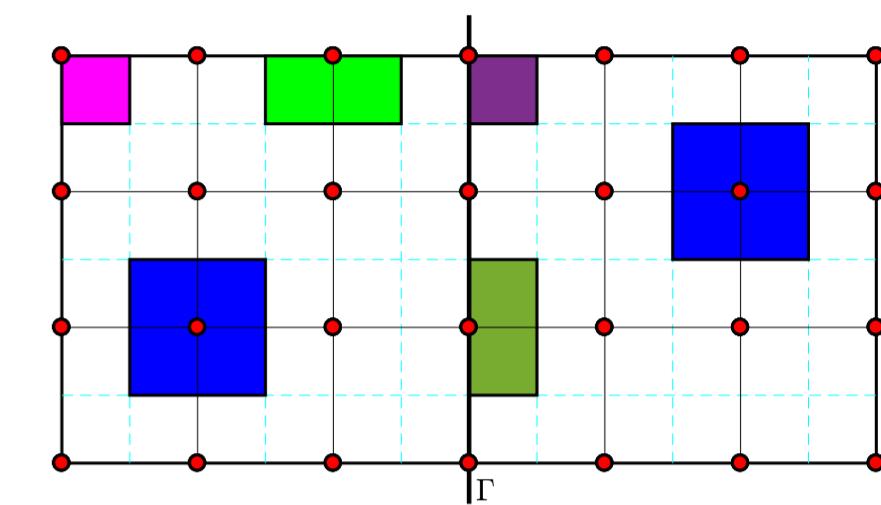
The presented research was supported by the VEGA Grant No. 1/0709/24.
The principal investigator of the grant: Hana Šmitala Mizerová

Fully implicit FV scheme

Space: finite-volume method with rectangular control volumes using grid points 800×800 on both Ω^- and Ω^+ .

Time: backward Euler method, fully implicit in U, V solved by Newton method with analytic Jacobian and damping using residual-based stopping and adaptive Δt driven by Newton iteration count.

Numerical experiments are presented mainly in [2].



Numerical experiments

In all experiments we use interface penalty parameter $L = 2 \times 10^4$. In figures the upper left panels show (u, v) , the lower left show (U, V) , and the right panels show time evolution of interface.

Experiment 1: implicit vs. explicit scheme, $m = 0.35$, $p = 1.7$, $\sigma = 1.1$, $r = 1.5$, $M = 2.2$
 $\omega \approx 0.656$, final time $T = 2$.

Initial data: Barenblatt profile on Ω^- with total mass $R = 10$ and with peak 2 for $x = (-2, 0)$. Right part Ω^+ : value induced through the penalized interface.

Main observation: speedup $\approx 2 \times$ vs. explicit scheme with mass loss $< 0.12\%$ and L^2 -difference of outputs $< 4 \times 10^{-6}$.

Experiment 2: multi-peak left vs. single right, $m = 0.35$, $p = 1.7$, $\sigma = 1.1$, $r = 1.5$, $M = 2.2$
 $\omega \approx 0.656$, final time $T = 2$.

Initial data: two equal Barenblatt profiles on Ω^- , each with total mass $R = 10$ and with peak 2 for $x = (-2, 2.5)$ and $x = (-2, -2.5)$, one Barenblatt profile with peak 1.5 for $x = (1.2, 0)$ and mass $R = 1$.

Main observation: speedup $\approx 2 \times$ vs. explicit scheme, mass loss $< 0.13\%$ and comparable differences as before.

Experiment 3: stiff regime, $m = 0.15$, $p = 0.3$, $\sigma = 0.35$, $r = 0.4$, $M = 0.5$
 $\omega \approx 0.759$, final time $T = 2$.

Initial data: Barenblatt profile on Ω^- with total mass $R = 10$ and with peak 2 for $x = (-2, 0)$. Right part again filled only through the interface. Very small exponents $(m, p, \sigma, r) \Rightarrow$ very steep fronts - almost impossible to compute with explicit scheme.

Main observation: compute time: 28 days 18 hours & mass loss $< 0.17\%$.

Experiment 4: long-time relaxation, $m = 0.9$, $p = 1.1$, $\sigma = 1.9$, $r = 2$, $M = 5$
final time $T = 20000$, with Neumann boundary conditions on vertical sides.

Initial data: 1D Barenblatt on Ω^- in x_1 , constant in x_2 , peak 2 for $x_1 = -2.5$ and total mass $R = 60$. We check usefulness of adaptive time step and observe long-time stability of the interface jump.

Main observation: at $T = 20000$: approached almost to constants in both subdomains $u \approx 0.01346$, $v \approx 0.5138$, with mass loss $< 0.09\%$.

References

[1] J. Babušíková, J. Filo, and P. Mihala.
Double nonlinear diffusion equations in a two-component domain.
Journal of Elliptic and Parabolic Equations, 2025.

[2] J. Babušíková, J. Filo, and P. Mihala.
Fully implicit finite-volume method for doubly-nonlinear diffusion in two-component domain.
(in preparation).