
Double Nonlinear
Diffusion Equations
in a Two‐Component
Domain

Mathematical model
Let 0 < m < p and 0 < σ < r be given. Our aim is to study the following problem.
Consider the equations

∂tu
m − ∇ ·

(
|∇u|p−1∇u

)
= 0 in Q−

∂tv
σ − ∇ ·

(
|∇v|r−1∇v

)
= 0 in Q+

}
, (1)

where

Q− = Ω− × (0, T ) , Ω− = (−ℓ, 0) × (−ℏ, ℏ) ,

Q+ = Ω+ × (0, T ) , Ω+ = (0, ℓ) × (−ℏ, ℏ) ,

for positive ℓ, ℏ, T .

The nonnegative functions u = u(x, t) and v = v(x, t), with x = (x1, x2) are assumed
to satisfy the following contact conditions at x1 = 0:(

|∇u|p−1∇u − |∇v|r−1∇v
)

· (1, 0) = 0
v = Muω

}
on S = Γ × (0, T ) (2)

for given 0 < M, ω < ∞, where Γ = {0} × (−ℏ, ℏ). On the remaining parts
of (∂Ω− \ Γ) and (∂Ω+ \ Γ) we consider the homogenous Dirichlet and Neumann
boundary conditions of the form:

u = 0 on D− × (0, T ) , D− = {−ℓ} × (−ℏ, ℏ) ,

v = 0 on D+ × (0, T ) , D+ = {ℓ} × (−ℏ, ℏ)

}
(3)

and

|∇u|p−1∇u · ν = 0 on N− × (0, T ) , N− = ∂Ω− \ (Γ ∪ D−) ,

|∇v|r−1∇v · ν = 0 on N+ × (0, T ) , N+ = ∂Ω+ \ (Γ ∪ D+) ,

}
(4)

where ν is the outward pointing unit normal vector at any point ofN− andN+ except
the corners. For definiteness, we study our problem subject to the appropriate initial
conditions

u( · , 0) = u0 on Ω−

v( · , 0) = v0 on Ω+

}
(5)

for given bounded nonnegative functions u0 and v0.
Since this problem has not yet been fully treated, we study its approximation here,
in which we replace condition (2) on S by the nonlinear boundary conditions

|∇u|p−1∇u·(1, 0)+L
(
Muω−v

)
= 0, −|∇v|r−1∇v ·(1, 0)+L

(
v−Muω) = 0 (6)

for positive L. This condition preserves (2)1, however, we are able to satisfy (2)2,
in a weak sense, by sending L → ∞, only in the case when p = r = 1. We shall
refer to (6) as L‐approximation of (2). Problem (1)‐(6) is analyzed in [1].

Transformation and L‐approximation

Note that plugging
U = |u|msignu and V = |v|σsign v

into (1), we see that U, V must satisfy
∂tU − ∇ ·

(
ϑ−(U, ∇U)∇U

)
= 0 in Q− ,

∂tV − ∇ ·
(
ϑ+(V, ∇V )∇V

)
= 0 in Q+ ,

}
where

ϑ−(U, ∇U) = m−p |U |
(1−m)p

m |∇U |p−1 and ϑ+(V, ∇V ) = σ−r |V |
(1−σ)r

σ |∇V |r−1

and the L‐approximation of (2) on Γ is

ϑ−(U, ∇U)∂x1U + L(MσU
ωσ
m − V ) = 0, −ϑ+(V, ∇V )∂x1V + L(V − MσU

ωσ
m ) = 0.

.

Fully implicit FV scheme
Space: finite‐volume method with rectangular control
volumes using grid points 800 × 800 on both Ω− and Ω+.

Time: backward Euler method, fully implicit in U, V
solved by Newton method with analytic Jacobian and
damping using residual‐based stopping and adaptive ∆t
driven by Newton iteration count.

Numerical experiments are presented mainly in [2].

Numerical experiments
In all experiments we use interface penalty parameterL = 2 × 104. In figures the upper left panels
show (u, v), the lower left show (U, V ), and the right panels show time evolution of interface.

Experiment 1: implicit vs. explicit scheme, m = 0.35, p = 1.7, σ = 1.1, r = 1.5, M = 2.2
ω ≈ 0.656, final time T = 2.
Initial data: Barenblatt profile on Ω− with total
mass R = 10 and with peak 2 for x = (−2, 0).
Right part Ω+: value induced through the pena‐
lized interface.
Main observation: speedup ≈ 2× vs. ex‐
plicit scheme with mass loss < 0.12% and
L2–difference of outputs < 4 × 10−6.

Experiment 2: multi‐peak left vs. single right, m = 0.35, p = 1.7, σ = 1.1, r = 1.5, M = 2.2
ω ≈ 0.656, final time T = 2.
Initial data: two equal Barenblatt profiles on Ω−,
each with total mass R = 10 and with peak 2 for
x = (−2, 2.5) and x = (−2, −2.5), one Barenblatt
profile with peak 1.5 for x = (1.2, 0) and mass
R = 1.
Main observation: speedup ≈ 2× vs. explicit
scheme, mass loss < 0.13% and comparable diffe‐
rences as before.

Experiment 3: stiff regime, m = 0.15, p = 0.3, σ = 0.35, r = 0.4, M = 0.5
ω ≈ 0.759, final time T = 2.
Initial data: Barenblatt profile on Ω− with total
mass R = 10 and with peak 2 for x = (−2, 0).
Right part again filled only through the interface.
Very small exponents (m, p, σ, r) ⇒ very steep
fronts ‐ almost impossible to compute with ex‐
plicit scheme.
Main observation: compute time: 28 days 18
hours &mass loss < 0.17%.

Experiment 4: long‐time relaxation, m = 0.9, p = 1.1, σ = 1.9, r = 2, M = 5
final time T = 20000, with Neumann boundary
conditions on vertical sides.
Initial data: 1D Barenblatt on Ω− in x1, constant
in x2, peak 2 for x1 = −2.5 and total massR = 60.
We check usefullness of adaptive time step and
observe long‐time stability of the interface jump.
Main observation: at T = 20000: approached al‐
most to constants in both subdomains u ≈ 0.01346, v ≈ 0.5138, with mass loss < 0.09%.
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