CATS Solver:

The Rise of Hybrid Abduction Algorithms

ABox Abduction in DL

Given a finite set of ABox assertions Abd (abducibles), a DL knowledge base X and

an ABox assertion O (observation), ABox abduction finds explanations £ € Abd such
that XU € = 0.

Explanations should be explanatory (K ¥ 0), consistent (K U £ ¥ L), relevant (€ ¥ 0),
and minimal (K U &, # Oforall €, &

ABox abduction is useful in ontology engineering, ontology debugging and repair,
medical diagnosis, system diagnosis, multimedia interpretation, e-commerce, and other
areas.
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CATS (Comenius Abduction Team Solver)

CATS is an ABox abduction solver for DLs written in Java, using the OWL API
to work with DL objects.

It offers 8 abduction algorithms:

A. Classic: Minimal Hitting Set, HS-Tree, RC-Tree;
B. Divide-and-conquer: QuickXplain, MergeXplain;
C. Hybrid: MHS-MXP, HST-MXP, RCT-MXP.

It is a vastly improved version of the previous MHS-MXP solver, which
supported only MHS and MHS-MXP.

Other changes include:

o reworked modular architecture, which allows to easily implement
additional algorithms and combine their properties;

o algorithmic and programming optimisations and bug fixes that improve
the solver’s performance and memory consumption;

o new log files that track detailed statistics about the internal behaviour
of the algorithms.

CATS supports:
e any OWL 2 ontology as the background knowledge X,
e any concept or role assertion (possibly multiple ones) as the observation O.

It provides explanations as sets of atomic (concept and role) assertions and their
complements, involving the named individuals from O or from X.

The solver allows (optional) additional settings:

e abduction algorithm;

e timeout;

o depth limit for HS-tree exploration;

o abducibles, either as a set of symbols or assertions;
o complements in explanations toggle;

CATS can be used:

1. through a command-line (default);

2. viaagraphical interface in the DL Abduction App;
3. asalJava library through the DL Abduction API.
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C. Hybrid Algorithms

o combination of classic algorithms with MergeXplain.

o brand new algorithms:
@ HST-MXP (based on HS-Tree)
‘ RCT-MXP (based on RC-Tree)

¢ MHS-MXP (Homola et al., Logics in Artif. Intell. 2023)
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Each test case had two variants: with negations allowed in
the explanations and without negations. Problems with
negations are harder to solve, especially for hybrid

algorithms.

The runs had a 2 hour (7200 seconds) time limit.
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Compared to their classic counterparts, hybrid algorithms:

o they also consume less memory.

In most cases, RCT-MXP algorithm outperforms MHS-MXP.
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o are able to find more explanations faster (especially in cases without negations),
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Cases with negations:
o allalgorithms reached the 7200-second limit.
Cases without negations:

e the hybrids could sometimes detect that all
explanations have already been found, and terminate
earlier (RCT-MXP was the most successful, with the

shortest average runtime).
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