CATS Solver:

The Rise of Hybrid Abduction Algorithms

ABox Abduction in DL

Given a finite set of ABox assertions Abd (abducibles), a DL knowledge base X and

an ABox assertion O (observation), ABox abduction finds explanations £ € Abd such
that XU € = 0.

Explanations should be explanatory (K ¥ 0), consistent (K U £ ¥ L), relevant (€ ¥ 0),
and minimal (K U &, # Oforall €, &

ABox abduction is useful in ontology engineering, ontology debugging and repair,
medical diagnosis, system diagnosis, multimedia interpretation, e-commerce, and other
areas.

K: DentalTrauma = Toothache
Cavity C SensitiveTeeth
SensitiveTeeth M DrankColdDrink E Toothache

O: Toothache(john)

€ = {DentalTrauma(john)}
€,= {DrankColdDrink(john), Cavity(john)}
€,= {DrankColdDrink(john), SensitiveTeeth(john)}

CATS (Comenius Abduction Team Solver)

CATS is an ABox abduction solver for DLs written in Java, using the OWL API
to work with DL objects.

It offers 8 abduction algorithms:

A. Classic: Minimal Hitting Set, HS-Tree, RC-Tree;
B. Divide-and-conquer: QuickXplain, MergeXplain;
C. Hybrid: MHS-MXP, HST-MXP, RCT-MXP.

It is a vastly improved version of the previous MHS-MXP solver, which
supported only MHS and MHS-MXP.

Other changes include:

o reworked modular architecture, which allows to easily implement
additional algorithms and combine their properties;

o algorithmic and programming optimisations and bug fixes that improve
the solver’s performance and memory consumption;

o new log files that track detailed statistics about the internal behaviour
of the algorithms.

CATS supports:
e any OWL 2 ontology as the background knowledge X,
e any concept or role assertion (possibly multiple ones) as the observation O.

It provides explanations as sets of atomic (concept and role) assertions and their
complements, involving the named individuals from O or from X.

The solver allows (optional) additional settings:

e abduction algorithm;

e timeout;

o depth limit for HS-tree exploration;

o abducibles, either as a set of symbols or assertions;
o complements in explanations toggle;

CATS can be used:

1. through a command-line (default);

2. viaagraphical interface in the DL Abduction App;
3. asalJava library through the DL Abduction API.

A. Minimal Hitting Set (Classic) Algorithms

. : consistency check
obtaining the assertions

& model extraction
satisfied in a model of KB

» use different strategies to build a tree structure that navigates through the explanation space. min=1 {GT, of X U (=04 U path
S,D} in each node
@ 1:D 2:S 3:T 4:C
C T S D min=1 x =1 0 min=1 .
@ 0 @ @ 1:D 1:D " 2:S| 3:T {T,D} O={} * O={Z]T,S}
T D T D C T S
° 0 ° 0 ° ° ° 1:D v, ©={T,C}
¢ Minimal Hitting Set (MHS) (Reiter, Artif. Intell. 1983) @ HS-Tree (HST) (Wotawa, Inf. Process. Lett. 2001) min=1 X @ RC-Tree (RCT) (Pill and Quaritsch, ISSRE Workshops 2015)
B. Divide-And-Conquer Algorithms Evaluation Methodology
o fast and resource-efficient, but incomplete; . :
—e— MHS e HST e RCT « QXP —4— MXP The algorithms were tested on an abduction problem dataset

Q QuickXplain (QXP) (Junker, AAAl 2004) finds at most 1 explanation;
‘ MergeXplain (MXP) (Shchekotykhin et al., JCAl 2015) finds all explanations of size 1,
& one bigger if at least one exists.

—_—

~ =X MergeXplain
& model extraction
of X U {—10} U path

in each node

C. Hybrid Algorithms

o combination of classic algorithms with MergeXplain.

o brand new algorithms:
@ HST-MXP (based on HS-Tree)
‘ RCT-MXP (based on RC-Tree)

¢ MHS-MXP (Homola et al., Logics in Artif. Intell. 2023)

Classic algorithms Hybrid algorithms

. Explanations found per node max.1 possibly multiple
Classics o | .
All explanations of size x found after xth level is after x—a1th level is finished
VS. finished
HYb rids Can detect if all possible never yes (may terminate sooner)

explanations have been found

—&— MHS-MXP —&— HST-MXP —#&— RCT-MXP

negations

no negations

used in previous evaluations:

« K — LUBM ontology,

1021 102 1

101 101

100 100

Sum of explanations found

e O0-AN..MNA (a).

Each test case had two variants: with negations allowed in
the explanations and without negations. Problems with
negations are harder to solve, especially for hybrid

algorithms.

The runs had a 2 hour (7200 seconds) time limit.

0 1000 2000 3000 4000 5000 6000 7000

negations

1000 2000 3000 4000

no negations

5000 6000 7000

1400 1400
1200 1200+
1000 1000
800 800
600 600

400 400

Memory used by JVM (MB)

200 200

RCT-MXP

MHS-MXP

HST-MXP

timeout

0 1000 2000 3000 4000 5000 6000 7000

Average run time without negations (sec)

Time (sec)

Compared to their classic counterparts, hybrid algorithms:

o they also consume less memory.

In most cases, RCT-MXP algorithm outperforms MHS-MXP.

0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000

o are able to find more explanations faster (especially in cases without negations),

5000 6000 7000

Cases with negations:
o allalgorithms reached the 7200-second limit.
Cases without negations:

e the hybrids could sometimes detect that all
explanations have already been found, and terminate
earlier (RCT-MXP was the most successful, with the

shortest average runtime).

This research was funded by the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09lo5-03-V02-00064.

COMENIUS
UNIVERSITY
BRATISLAVA

Read paper

Jakub Kloc, Janka Boborova,

Martin Homola and Julia Pukancova

Check CATS on GitHub

Comenius University in Bratislava,
Slovakia

