
B. Divide-And-Conquer Algorithms

 This research was funded by the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09I05-03-V02-00064.

Jakub Kloc, Janka Boborová,
Martin Homola and Júlia Pukancová

Comenius University in Bratislava,
 Slovakia

CATS (Comenius Abduction Team Solver)

CATS is an ABox abduction solver for DLs written in Java, using the OWL API
to work with DL objects.

It offers 8 abduction algorithms:

A. Classic: Minimal Hitting Set, HS-Tree, RC-Tree;
B. Divide-and-conquer: QuickXplain, MergeXplain;
C. Hybrid: MHS-MXP, HST-MXP, RCT-MXP.

It is a vastly improved version of the previous MHS-MXP solver, which
supported only MHS and MHS-MXP.

Other changes include:

● reworked modular architecture, which allows to easily implement
additional algorithms and combine their properties;

● algorithmic and programming optimisations and bug fixes that improve
the solver’s performance and memory consumption;

● new log files that track detailed statistics about the internal behaviour
of the algorithms.

A. Minimal Hitting Set (Classic) Algorithms

CATS Solver:
The Rise of Hybrid Abduction Algorithms

CATS supports:
● any OWL 2 ontology as the background knowledge K,
● any concept or role assertion (possibly multiple ones) as the observation O.

It provides explanations as sets of atomic (concept and role) assertions and their
complements, involving the named individuals from O or from K.

The solver allows (optional) additional settings:

● abduction algorithm;
● timeout;
● depth limit for HS-tree exploration;
● abducibles, either as a set of symbols or assertions;
● complements in explanations toggle;
● …

CATS can be used:
1. through a command-line (default);
2. via a graphical interface in the DL Abduction App;
3. as a Java library through the DL Abduction API.

Check CATS on GitHubRead paper

ABox Abduction in DL
Given a finite set of ABox assertions Abd (abducibles), a DL knowledge base K and
an ABox assertion O (observation), ABox abduction finds explanations E ⊆ Abd such
that K ∪ E ⊨ O.

Explanations should be explanatory (K ⊭ O), consistent (K ∪ E ⊭ ⊥), relevant (E ⊭ O),
and minimal (K ∪ E

1

 ⊭ O for all E
1

 ⊊ E).

ABox abduction is useful in ontology engineering, ontology debugging and repair,
medical diagnosis, system diagnosis, multimedia interpretation, e-commerce, and other
areas.

K: DentalTrauma ⊑ Toothache
Cavity ⊑ SensitiveTeeth
SensitiveTeeth ⊓ DrankColdDrink ⊑ Toothache

O: Toothache(john)

E

1

 = {DentalTrauma(john)}
E

2

 = {DrankColdDrink(john), Cavity(john)}
E

3

 = {DrankColdDrink(john), SensitiveTeeth(john)}

Minimal Hitting Set (MHS) (Reiter, Artif. Intell. 1983) HS-Tree (HST) (Wotawa, Inf. Process. Lett. 2001) RC-Tree (RCT) (Pill and Quaritsch, ISSRE Workshops 2015)

MHS-MXP (Homola et al., Logics in Artif. Intell. 2023)

consistency check
& model extraction

of K ∪ {¬O} ∪ path

in each node

MergeXplain
& model extraction

 of K ∪ {¬O} ∪ path

in each node

Evaluation
● fast and resource-efficient, but incomplete;

QuickXplain (QXP) (Junker, AAAI 2004) finds at most 1 explanation;
MergeXplain (MXP) (Shchekotykhin et al., JCAI 2015) finds all explanations of size 1,

 & one bigger if at least one exists.

● brand new algorithms:
 HST-MXP (based on HS-Tree)
 RCT-MXP (based on RC-Tree)

● use different strategies to build a tree structure that navigates through the explanation space.

Compared to their classic counterparts, hybrid algorithms:

● are able to find more explanations faster (especially in cases without negations),
● they also consume less memory.

In most cases, RCT-MXP algorithm outperforms MHS-MXP.

C. Hybrid Algorithms
● combination of classic algorithms with MergeXplain.

obtaining the assertions
satisfied in a model of KB

Classic algorithms Hybrid algorithms

Explanations found per node max.1 possibly multiple

All explanations of size x found after xth level is
finished

after x–1th level is finished

Can detect if all possible
explanations have been found

never yes (may terminate sooner)

Classics
vs.

Hybrids

Methodology

The algorithms were tested on an abduction problem dataset
used in previous evaluations:

● K – LUBM ontology,
● O – A1⊓ ... ⊓ An(a).

Each test case had two variants: with negations allowed in
the explanations and without negations. Problems with
negations are harder to solve, especially for hybrid
algorithms.

The runs had a 2 hour (7200 seconds) time limit.

Cases with negations:

● all algorithms reached the 7200-second limit.

Cases without negations:

● the hybrids could sometimes detect that all
explanations have already been found, and terminate
earlier (RCT-MXP was the most successful, with the
shortest average runtime).

