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Circular chromatic index

Motivation: Circular colourings model scheduling optimization problems where
we don't require fixed time slots (unlike colourings with integer-valued colours).

A circular r-edge-colouring c assigns colours from |0, r) to edges in such a way
that for any two adjacent edges eand f we have 1 < |c(e) — c(f)| < r — 1.

Circular chromatic index (investigated since about 2000):

X-(G) = inf {r | G has circular r-edge-colouring}.

* Infimum always attained and rational; x/'(G) = [xL(G)].
= There is a finite set of fractions p/q to consider for a given graph (p < |E(G)|).

= According to the Vizing theorem, chromatic index x/(G) of a A-reqular graph
Gis Aor A+ 1, hence Y.(G) € [A, A +1].

= In a A-edge-colouring of G, colours of edges around a vertex are given; we
can only change the ordering of the colours. In a (A + ¢)-edge-colouring,
that extra ¢ allows the colours to shift slightly around each vertex (they no
longer have to be integers). Over a large graph, these small shifts
accumulate, and typically a small € is sufficient.

= Graphs of large enough girth are all (A + €)-colourable for any small ¢ [z, 2].

" It is easy to construct sequences of values of x} decreasing towards A. It was
conjectured by Zhu [3] that there are no increasing sequences; we managed
to refute that in 2010 [4].

Computational challenges

* Determining x’ and ¢ is NP-hard. So is subgraph isomorphism.

= Computing Y~ takes much longer than computing ’ because the number of
colours grows with graph size even for fixed A.

= There are existing generators for graphs and multigraphs with maximum
degree A, but none gives any control over colourability. We mostly used the
CVD heuristic to filter out colourable graphs.

= Generally, the fastest approach is reduction to SAT (and using Kissat as the
solver, occasionally with breakid for symmetry breaking). Sometimes it is
highly advantageous to run the VF2 algorithm first, filtering out graphs that
contain specific small subgraphs enforcing large x7. MILP is by far worse, but
CP-SAT from Google seems faster than SAT specifically for circular
9/2-edge-colouring. No single method dominates in every situation.

= The critical parameter for SAT is the number of variables, which grows
quadratically with graph size in our case (not good). However, A strongly
affects running time: for A = 3, a graph with ~5o0 edges takes minutes, for
A > 6 even 30 edges might take weeks.

= UGC is computationally infeasible for A > 6. The number of graphs grows
about 100x per vertex and the computation of p/g-colouring even with g = 3
takes days for graphs with 10 vertices.

What values can x| take?

* For A = 3, every rational in [3,3 + 1/3] is attainable [4].

* Infinitely many valuesin [3 + 1/3,3 + 1/2] (the only accumulation point is
3 + 1/3), no graphs known for (3 + 1/2,3 + 2/3) (open). The middle portion
of the interval |A; A + 1] seems to be the hardest.

* The Petersen graph has x. = 3 + 2/3, no other such graph known (open).
* No graphs or multigraphs with . € (3 + 2/3, 4) exist [5].

* For A > 4, every rational in [A, A + 1/6] is attainable (can be extended to
A + 1/3 if multigraphs are allowed) [6].

* Infinitely many additional values below A + 1/2 [7], but nothing exhaustive
or systematic known.

Results: A = 4

Order Multigraphs  New values of x| | Order Graphs | New values of ¢

3 5 5/1,6/1 5 11 9/2,5/1

4 25 — 6 49 —

5 124 9/2 7 289 —

6 704 — 8 1735 —

7 4283 13/3,14/3 9 11676 13/3,14/3

8 29773 — 10 87669 —

9 227016 17/4 11 733811 —
10 1916000 — 12 6781207 —

11 17633748 21/5,22/5,19/4 13| 68462296  17/4,22/5
12 176094228 — 14 748330892 —
131893482910 23/5 158787966433 — (above 9/2)

We found two 4-connected 4-regular graphs with x. = 5and constructed infinite
families of graphs with x. = A + 1 for A € {4, 5,6}, refuting all UGC variants
using extra edge-connectivity assumption suggested in [8].

Upper Gap Conjecture (UGC) In stark contrast to A = 3, (multi)graphs with x. € {A + 2/3,A + 1} seem

Conjecture: Forany A, there are no graphs with X’C(G) c(A+1—1/A, A+1). plentiful for A > 4. The larger the degree, the more so.

Status: Proved for A € {2,3}. Openfor A > 4.

We conducted a systematic computation of circular chromatic index of all small
graphs for A € {4, 5,6} with two aims:

(1) counterexamples to Upper Gap Conjecture;

(2) graphs with x. = A+1, because these graphs are obstacles to any statement
of the form “all graphs are (A + ¢)-edge-colourable for some ¢ < 1” (which is 4] X, Zhv. Circular chromatic number: a survey. Discrete Mathematics, 226(2):373-410, 2001

the crux of UGC) and have to be excluded by some extra assumption (there are [4] R.Lukotka and J. Mazék. Cubic graphs with given circular chromatic index. SIAM Journal on Disc. Math., 24(3):1091-1103, 2010.
only two such graphs for A = 3, so this extra assumption is trivial in that case). [5] P.Afshani et al. Circular chromatic index of graphs of maximum degree 3. Journal of Graph Theory, 49:325-335, 2005.
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