

From Noise to Readable Images

Eavesdropping on Computer Screens via Custom Hardware and Deep Learning Image Reconstruction

Video Transmission Interfaces

Several **video transmission interfaces** are used to deliver image data from a computer to a display device. These include **analogue** and **digital** formats, each with signaling methods that can be **susceptible to electromagnetic leakage**.

Analogue (VGA)

- Maps each **pixel's R, G, and B intensities** to corresponding **voltage levels**
- Pixels are transmitted as **horizontal scan lines**, synchronized by the **HSync** signal
- These scan lines form complete **image frames**, aligned using the **VSync** signal
- The process repeats continuously to produce the displayed image
- HSync** and **VSync** signals are transmitted together with **blank pixels**, creating **padding** around the visible image area

Digital (HDMI)

- Transmits each pixel's **R, G, and B intensities** using **Transition-Minimized Differential Signaling (TMDS)**
- 8-bit color values** are encoded into **10-bit TMDS symbols**
- These symbols are sent as a **high-speed serial data stream**
- The display device converts the **10-bit TMDS symbols** back into **8-bit color values**
- Displayed image is aligned using **embedded synchronization signals**, analogous to **HSync** and **VSync** in VGA

Van Eck's Radiations

The principle behind the attack is that image transmission relies on **rapid voltage transitions** to represent pixel colour intensities. These transitions unintentionally emit **electromagnetic radiation** in the **VHF (30–300 MHz)** and **UHF (300 MHz–3 GHz)** radio bands [1].

Pixel Timing

For **VGA**, the pixel transmission period is

$$t_p = 1/(x_t \cdot y_t \cdot f_v)$$

where x_t is the display width, y_t is the display height, and f_v is the display frame rate.

For **HDMI**, where each pixel intensity is represented using n_b bits, the bit transmission period is

$$t_b = 1/(x_t \cdot y_t \cdot f_v \cdot n_b)$$

Inference of Pixel Colour

In **VGA**, voltage transitions generate **RF impulses** at the multiples of t_p . The **impulse amplitude** corresponds to the **grayscale intensity** of the transmitted pixel.

In **HDMI**, where **RF impulses** occur at the multiples of t_b , the pixel's **grayscale intensity** can be inferred by **averaging the bit-level signal** over each pixel transmission period.

TempestSDR

Eavesdropping on a display device can be executed using **TempestSDR**, an open-source software-defined radio application, capable of **reconstructing images in real time** from captured electromagnetic emissions [2].

In addition to the reconstruction, it provides **automatic detection of the target display's resolution and frame rate**, a feature essential for carrying out the attack.

School of Medicine

Yale School of Medicine graduates go on to become leaders in academic medicine and health care, and innovators in clinical practice, biotechnology, and public policy.

[SCHOOL WEBSITE](#)

Baseline Attack

School of Medicine

Yale School of Medicine graduates go on to become leaders in academic medicine and health care, and innovators in clinical practice, biotechnology, and public policy.

[SCHOOL WEBSITE](#)

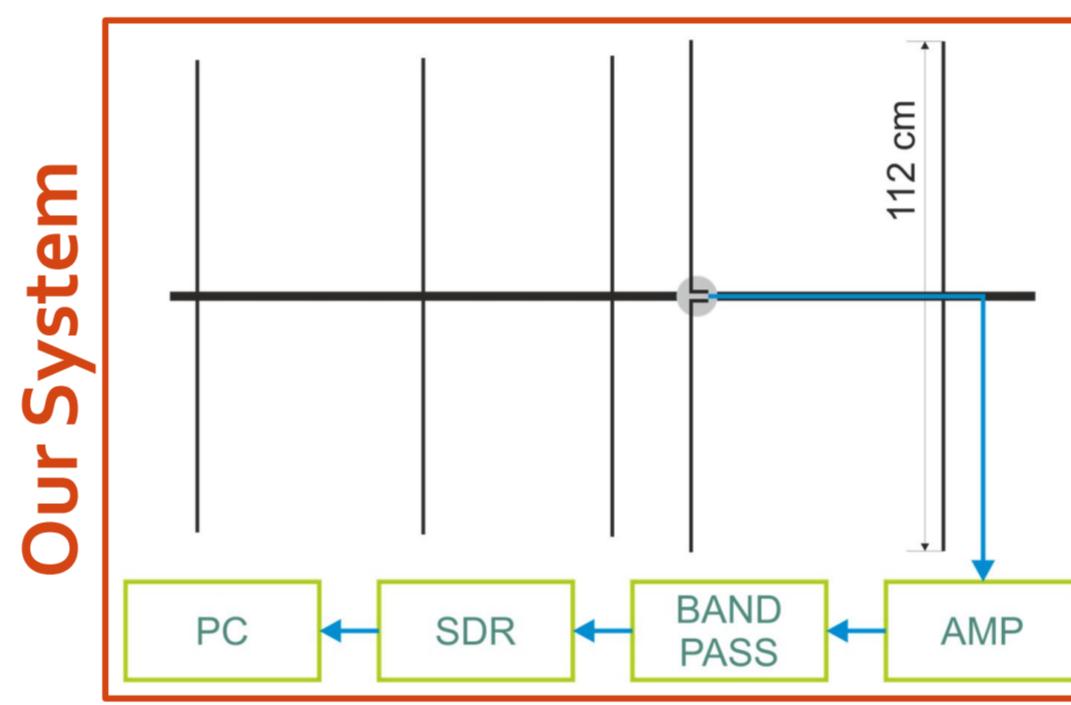
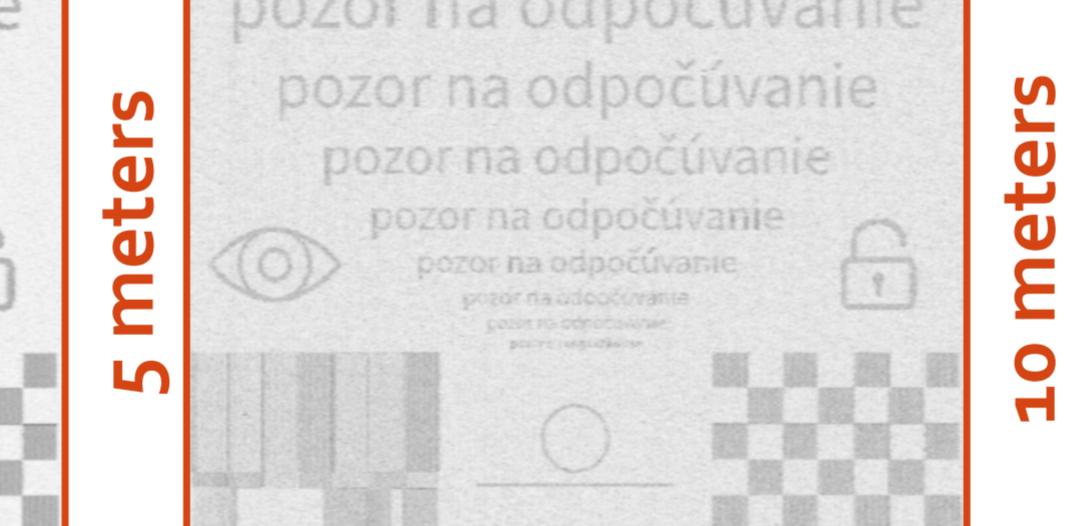
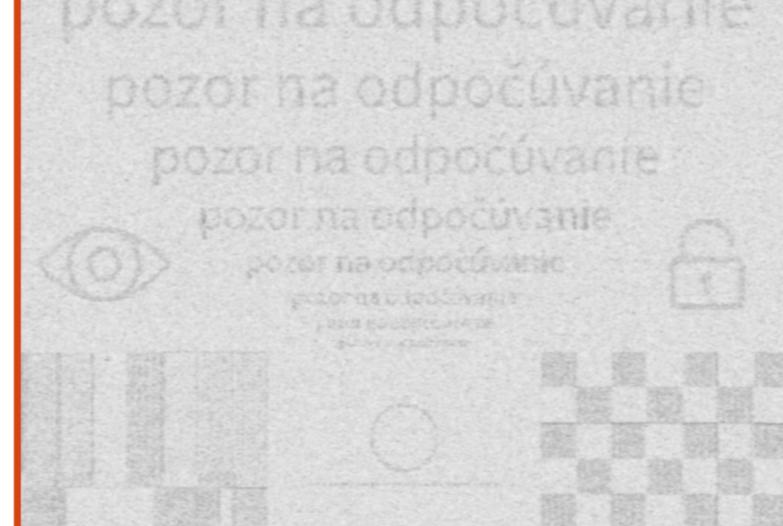
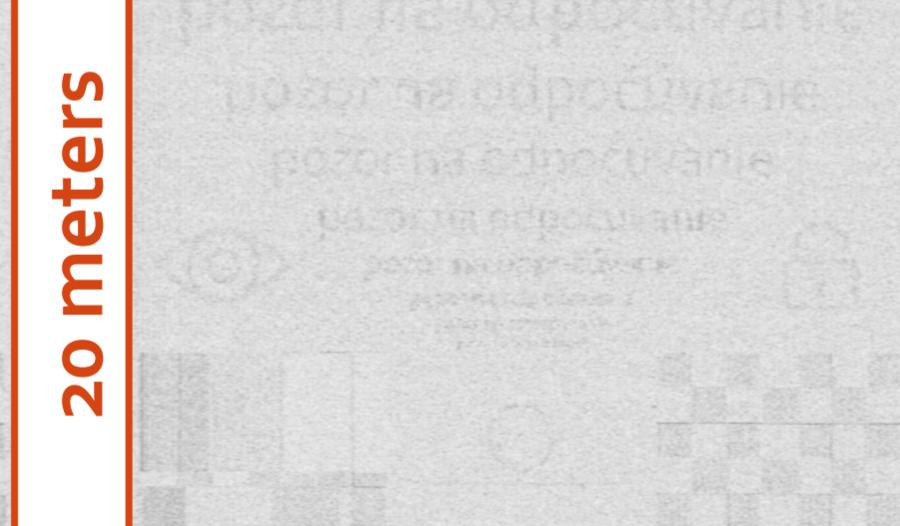
Custom Hardware

Extending the Range of Attack

The effectiveness of electromagnetic eavesdropping strongly depends on **hardware performance**. Using only standard equipment — specifically an **omni-directional antenna** — we found that the practical capture range was limited to **approximately 1 meter**.

To extend this range, we employ a **high-gain directional Yagi-Uda antenna**, a **low noise amplifier (LNA)**, and a **band-pass filter**. The hardware was tuned to **130 MHz** and evaluated from various distances.

With optimized hardware, the capture range increased **from 1 meter to 20 meters**.



Deep Learning Image Reconstruction

Recovering the Images

Even with optimized hardware, reconstructed images remain **noisy and distorted**. To address this issue, we applied **deep learning** techniques for **image post-processing and enhancement**.

Dataset

- 650 real **ground-truth** images from desktops, popular websites, and graphical user interfaces
- 200 generated **ground-truth** images with random text (varied fonts and sizes) to improve **text legibility**
- Each ground-truth image has **~6 captures** with different **antenna distances and orientations**
- Captures include both **VGA** and **HDMI** emissions, simulating real-world variations
- Padding was removed** with template matching
- Split the dataset in 80:10:10 ratio into training, validation, and test subsets
- Whole process was **automated** using PyAutoGUI, Selenium, and OpenCV

DnCNN

- CNN designed for **image denoising**
- Trained to predict the **residual image** (noise map)
- Clean image obtained by **subtracting** the predicted residual image from degraded image
- Features **17 convolutional layers**

DRUNet

- CNN designed for **general image restoration tasks**
- Trained to predict the **clean image**
- Based on the **U-Net architecture**, with a **4-level encoder-decoder** and skip connections
- Proven use in the **Deep-Tempest** project [3]

Training

- From **scratch** on the train subset for 100 epochs
- Input images were split into **256x256 pixel patches**
- Batch size** set to 32
- Adam Optimizer** was utilized

School of Medicine

Yale School of Medicine graduates go on to become leaders in academic medicine and health care, and innovators in clinical practice, biotechnology, and public policy.

School of Medicine

Yale School of Medicine graduates go on to become leaders in academic medicine and health care, and innovators in clinical practice, biotechnology, and public policy.

DRUNet

Yale School of Medicine graduates go on to become leaders in academic medicine and health care, and innovators in clinical practice, biotechnology, and public policy.

Results

Evaluated using image quality and text legibility metrics

- Peak Signal-to-Noise Ratio (PSNR)
- Structural Similarity Index Measure (SSIM)
- Character Error Rate (CER)

Method	PSNR	SSIM	CER
TempestSDR	8.65 dB	0.41	86 %
DnCNN	17.63 dB	0.75	54 %
DRUNet	19.08 dB	0.87	46 %

References

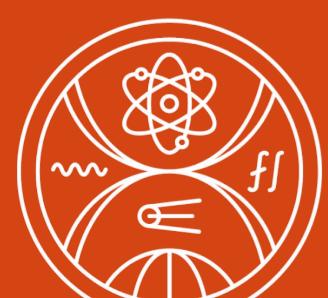
- [1] VAN ECK, W. *Electromagnetic radiation from display units: An eavesdropping risk?* Computers & Security. 1985, 4(4), 269–286.
- [2] MARINOV, M. *TempestSDR – Remote eavesdropping using a software-defined radio platform*. GitHub repository, 2025. URL: github.com/martinmarinov/TempestSDR
- [3] FERNANDÉZ, S. et al. *Deep-Tempest: Using Deep Learning to Eavesdrop on HDMI from its Unintended Electromagnetic Emanations* [preprint]. 2024. arXiv:2407.09717.

ACCORD
SCIENCE FOR FUTURE

MINISTERSTVO
ŠKOLSTVA, VEDY,
VÝSKUMU A ŠPORTU
SLOVENSKEJ REPUBLIKY

EUROPSKÁ ÚNIA
Európske strukturálne a investičné fondy
OP Integrovaná infraštruktúra 2014 – 2020

This work was supported by the Operational Program Integrated Infrastructure for the project: Advancing University Capacity and Competence in Research, Development and Innovation (ACCORD, ITMS2014+313021X329), co-financed by the European Regional Development Fund.



FAKULTA MATEMATIKY,
FYZIKY A INFORMATIKY
Univerzita Komenského
v Bratislave

MATFYZ
CONNECTIONS

Filip Tuch, Richard Ostertág
Comenius University Bratislava, Slovakia